Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


41 - 45 / 45
First pagePrevious page12345Next pageLast page
A pyrrolopyridazinedione-based copolymer for fullerene-free organic solar cells
Astrid-Caroline Knall, Samuel Rabensteiner, Sebastian F. Hoefler, Matiss Reinfelds, Mathias Hobisch, Heike M. A. Ehmann, Nadiia Pastukhova, Egon Pavlica, Gvido Bratina, Illie Hanzu, Shuguang Wen, Renqiang Yang, Gregor Trimmel, Thomas Rath, 2021, original scientific article

Abstract: The recent success of non-fullerene acceptors in organic photovoltaics also entails a change in the requirements to the polymer donor in terms of optical and morphological properties leading to a demand for novel conjugated polymers. Herein, we report on the synthesis of a 1,4-bis-(thiophene-2-yl)-pyrrolopyridazinedione based copolymer with 2-ethylhexyl substituents on the pyrrolopyridazinedione moiety. A 2D conjugated benzodithiophene (BDT) was chosen as comonomer. The resulting copolymer T-EHPPD-T-EHBDT showed a molecular weight of 10.2 kDa, an optical band gap of 1.79 eV, a hole mobility of 1.8 × 10−4 cm2 V−1 s−1 and a preferred face-on orientation with regard to the substrate. The comparably wide band gap as well as the determined energy levels (HOMO: −5.47 eV, LUMO: −3.68 eV) match well with the narrow band gap non-fullerene acceptor ITIC-F, which was used as the acceptor phase in the bulk heterojunction absorber layers in the investigated solar cells. The solar cells, prepared in inverted architecture, revealed power conversion efficiencies up to 7.4% using a donor:acceptor ratio of 1 : 1 in the absorber layer.
Found in: osebi
Keywords: non-fullerene solar cells, charge transport, charge mobility, power conversion efficiency
Published: 27.01.2021; Views: 1337; Downloads: 0
.pdf Fulltext (2,68 MB)

Multiresponsive nonvolatile memories based on optically switchable ferroelectric organic field-effect transistors
Martin Herder, Alex Dixon, Marco Carroli, Egon Pavlica, Stefan Hecht, Gvido Bratina, Emanuele Orgiu, Paolo Samorì, 2021, original scientific article

Abstract: Organic transistors are key elements for flexible, wearable, and biocompatible logic applications. Multiresponsivity is highly sought‐after in organic electronics to enable sophisticated operations and functions. Such a challenge can be pursued by integrating more components in a single device, each one responding to a specific external stimulus. Here, the first multiresponsive organic device based on a photochromic–ferroelectric organic field‐effect transistor, which is capable of operating as nonvolatile memory with 11 bit memory storage capacity in a single device, is reported. The memory elements can be written and erased independently by means of light or an electric field, with accurate control over the readout signal, excellent repeatability, fast response, and high retention time. Such a proof of concept paves the way toward enhanced functional complexity in optoelectronics via the interfacing of multiple components in a single device, in a fully integrated low‐cost technology compatible with flexible substrates.
Found in: osebi
Keywords: organic transistors, memory, time-dependent
Published: 11.03.2021; Views: 1067; Downloads: 0
.pdf Fulltext (281,34 KB)

Kvantni Hallov pojav v 2D materialih
Matevž Rupnik, 2021, research project (high school)

Found in: osebi
Keywords: kvantni Hallov pojav, 2D materiali, Schrödingerjeva enačba, elektroni v električnem in magnetnem polju, grafen, Diracova enačba
Published: 28.06.2021; Views: 976; Downloads: 0
.pdf Fulltext (907,27 KB)

Search done in 0 sec.
Back to top