Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Detection and quantification of exhaled volatile organic compounds in mechanically ventilated patients–comparison of two sampling methods
Iain R. White, Pouline M. van Oort, Waqar Ahmed, Craig Johnson, Jonathan Bannard-Smith, Timothy Felton, Lieuwe D. Bos, Royston Goodacre, Paul Dark, Stephen J. Fowler, 2020, original scientific article

Abstract: Exhaled breath analysis is a promising new diagnostic tool, but currently no standardised method for sampling is available in mechanically ventilated patients. We compared two breath sampling methods, first using an artificial ventilator circuit, then in “real life” in mechanically ventilated patients on the intensive care unit. In the laboratory circuit, a 24-component synthetic-breath volatile organic compound (VOC) mixture was injected into the system as air was sampled: (A) through a port on the exhalation limb of the circuit and (B) through a closed endo-bronchial suction catheter. Sorbent tubes were used to collect samples for analysis by thermal desorption-gas chromatography-mass spectrometry. Realistic mechanical ventilation rates and breath pressure–volume loops were established and method detection limits (MDLs) were calculated for all VOCs. Higher yields of VOCs were retrieved using the closed suction catheter; however, for several VOCs MDLs were compromised due to the background signal associated with plastic and rubber components in the catheters. Different brands of suction catheter were compared. Exhaled VOC data from 40 patient samples collected at two sites were then used to calculate the proportion of data analysed above the MDL. The relative performance of the two methods differed depending on the VOC under study and both methods showed sensitivity towards different exhaled VOCs. Furthermore, method performance differed depending on recruitment site, as the centres were equipped with different brands of respiratory equipment, an important consideration for the design of multicentre studies investigating exhaled VOCs in mechanically ventilated patients.
Found in: osebi
Keywords: Volatile organic compounds, infection, breath, ventilator associated pneumonia
Published: 10.12.2020; Views: 811; Downloads: 0
.pdf Fulltext (1,61 MB)

2.
Breath and plasma metabolomics to assess inflammation in acute stroke
Craig Johnson, Nicholas J. W. Rattray, Amit K. Kishore, Royston Goodacre, Waqar Ahmed, Iain R. White, Maxim Wilkinson, Craig J. Smith, Stephen J. Fowler, 2021, original scientific article

Abstract: Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.
Found in: osebi
Keywords: stroke, metabolomics, breath, VOCs, inflammation
Published: 18.11.2021; Views: 127; Downloads: 2
URL Fulltext (0,00 KB)
This document has many files! More...

Search done in 0 sec.
Back to top