Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


1 - 10 / 141
First pagePrevious page12345678910Next pageLast page
Gabrijela Zaharijas, Collaboration Fermi LAT, M. Ackermann, 2016, original scientific article

Abstract: We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (∼1 7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LATon orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.
Found in: osebi
Keywords: catalogs – gamma-rays
Published: 25.02.2016; Views: 2168; Downloads: 0
.pdf Fulltext (2,26 MB)

Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA)
Gabrijela Zaharijas, John Carr, 2015, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will have a unique chance of discovery for a large range of masses in Weakly Interacting Massive Particles models of dark matter. The principal target for dark matter searches with CTA is the centre of the Galactic Halo. The best strategy is to perform CTA observations within a few degrees of the Galactic Centre, with the Galactic Centre itself and the most intense diffuse emission regions removed from the analysis. Assuming a cuspy dark matter density profile for the Milky Way, 500 hours of observations in this region provide sensitivities to and below the thermal cross-section of dark matter annihilations, for masses between a few hundred GeV and a few tens of TeV; therefore CTA will have a significant chance of discovery in some models. Since the dark matter density in the Milky Way is far from certain in the inner kpc region, other targets are also proposed for observation, like ultra-faint dwarf galaxies such as Segue 1 with 100 hours per year proposed. Beyond these two observational targets, further alternatives, such as Galactic dark clumps, will be considered closer to the actual date of CTA operations. Sensitivity predictions for dark matter searches are given on the various targets taking into account the latest instrument response functions expected for CTA together with a discussion on the systematic uncertainties from the backgrounds.
Found in: osebi
Keywords: dark matter, gamma-ray astronomy
Published: 01.03.2016; Views: 1787; Downloads: 142
.pdf Fulltext (724,07 KB)

The Dark Side of the Matter
Gabrijela Zaharijas, 2019, other component parts

Found in: osebi
Keywords: Dark matter, cosmology
Published: 17.05.2020; Views: 131; Downloads: 0
.pdf Fulltext (27,66 MB)

Gabrijela Zaharijas, B. L. Winer, 2016, original scientific article

Abstract: The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1–100 GeV from a 15° × 15° region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner ∼1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15° × 15° region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
Found in: osebi
Keywords: cosmic rays – Galaxy: center – gamma-rays: general – gamma-rays: ISM – radiation mechanisms: non-thermal
Published: 02.03.2016; Views: 2013; Downloads: 155
.pdf Fulltext (6,36 MB)

Search done in 0 sec.
Back to top