Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 64
First pagePrevious page1234567Next pageLast page
1.
2.
3.
4.
Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion
Gulshan Walke , Jana Aupič, Hadeel Kashoua , Pavel Janoš, Shelly Meron , Yulia Shenberger , Zena Qasem , Lada Gevorkyan-Airapetov , Alessandra Magistrato, Sharon Ruthstein , 2022, original scientific article

Abstract: Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.
Keywords: ctr1, copper, epr, molecular dynamics
Published in RUNG: 15.09.2022; Views: 1065; Downloads: 0
This document has many files! More...

5.
The conformational plasticity of the selectivity filter methionines controls the in-cell Cu(I) uptake through the CTR1 transporter
Pavel Janoš, Jana Aupič, Sharon Ruthstein , Alessandra Magistrato, 2022, original scientific article

Abstract: Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity copper transporter 1 (CTR1), being the main in-cell copper [Cu(I)] entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two methionine (Met) triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, our outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.
Keywords: copper, membrane transporter, molecular dynamics, QM/MM, free energy
Published in RUNG: 15.09.2022; Views: 1277; Downloads: 0
This document has many files! More...

6.
Manjše slovenske založbe in veliki slovenski avtorji
Jana Bauer, Mateja Sužnik, Mateja Lazar, Barbara Pregelj, 2022, other monographs and other completed works

Keywords: založništvo, projekti, mednarodno sodelovanje, manjše založbe
Published in RUNG: 12.09.2022; Views: 1028; Downloads: 28
.pdf Full text (253,52 KB)

7.
Photoexcitation processes in atoms
Alojz Kodre, Iztok Arčon, Jana Padežnik Gomilšek, 2021, independent scientific component part or a chapter in a monograph

Abstract: Photoelectric absorption is characterized by a smooth power-law decrease of the cross section with photon energy. Absorption edges reveal rich structure, which continues into the high-energy side. The quasiperiodic signal, superposed onto the smooth basis, due to scattering of the photoelectron on the neighbours of the target atom provides the basis for the structural (XAFS) analysis of the material. Irregular tiny resonances and edges that appear over the same general range as XAFS are recognized as intra-atomic effects: multielectron excitations (MEE) owing to correlated motion in the electronic cloud. The systematic study of MEE began on noble gases and metallic vapours, both of which are gases of free atoms. With some extremely strong MEE, mostly coexcitations of the subvalence d and f electrons, the structural XAFS analysis may be compromised; hence, there is a need to independently determine the MEE signal, the atomic absorption background (AAB) for the analyzed element, and remove it prior to analysis. In view of the scarcity of elements which can practically be prepared in a free-atom gas state, several approaches to approximate the AAB have been developed: analysis of disordered compounds, where the weak and simple XAFS signal can be modelled and removed, and correlation analysis of the absorption spectra of several independent samples, where the AAB is extracted in an iterative procedure.
Keywords: photoexcitation, XAFS, multielectron excitations, atomic absorption background
Published in RUNG: 15.12.2021; Views: 1618; Downloads: 0
This document has many files! More...

8.
Oligomeric self-assembly of a coiled-coil-based bipyramidal protein cage
Fabio Lapenta, Jana Aupič, Žiga Strmšek, Roman Jerala, 2021, published scientific conference contribution abstract

Keywords: protein design, coiled coils, CCPO
Published in RUNG: 13.07.2021; Views: 1938; Downloads: 50
URL Link to full text
This document has many files! More...

9.
10.
Designed folding pathway of modular coiled-coil-based proteins
Jana Aupič, Žiga Strmšek, Fabio Lapenta, David Pahovnik, Tomaž Pisanski, Igor Drobnak, Ajasja Ljubetič, Roman Jerala, 2021, original scientific article

Published in RUNG: 11.02.2021; Views: 2205; Downloads: 110
.pdf Full text (3,32 MB)
This document has many files! More...

Search done in 0.06 sec.
Back to top