Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Comparing black-carbon- and aerosol-absorption-measuring instruments : a new system using lab-generated soot coated with controlled amounts of secondary organic matter
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, Konstantina Vasilatou, 2022, complete scientific database of research data

Abstract: A preprint of the publication can be found here: AMTD - Response of black carbon and aerosol absorption measuring instruments to laboratory-generated soot coated with controlled amounts of secondary organic matter (copernicus.org) (doi.org/10.5194/amt-2021-214). The files correspond to the raw data sets used for Figures 3 and 4 of the aforementioned publication. The date and start/stop time of the measurements are listed in the file "overview_measurements".
Keywords: aerosol absorption coefficient, black carbon, absorption enhancement
Published in RUNG: 19.03.2024; Views: 156; Downloads: 2
.pdf Full text (598,88 KB)
This document has many files! More...

2.
Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, Konstantina Vasilatou, 2022, original scientific article

Abstract: We report on an inter-comparison of black-carbon- and aerosol-absorption-measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols was generated with elemental to total carbon (EC  TC) mass fraction ranging from about 90 % down to 10 % and single-scattering albedo (SSA at 637 nm) from almost 0 to about 0.7. A dual-spot Aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument, and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardised and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ black-carbon-measuring (BC-measuring) instruments based on realistic test aerosols.
Keywords: black carbon, aerosol absorption, secondary organic aerosol, coating
Published in RUNG: 01.02.2022; Views: 1611; Downloads: 48
.pdf Full text (752,94 KB)

Search done in 0.01 sec.
Back to top