Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Real-time multi-marker measurement of organic compounds in human breath: Towards fingerprinting breath
Iain R White, Kerry A Willis, Christopher Whyte, Rebecca Cordell, Robert S Blake, Andrew J Wardlaw, 2013, original scientific article

Abstract: The prospects for exploiting proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) in medical diagnostics are illustrated through a series of case studies. Measurements of acetone levels in the breath of 68 healthy people are presented along with a longitudinal study of a single person over a period of 1 month. The median acetone concentration across the population was 484 ppbV with a geometric standard deviation (GSD) of 1.6, whilst the average GSD during the single subject longtitudinal study was 1.5. An additional case study is presented which highlights the potential of PTR-ToF-MS in pharmacokinetic studies, based upon the analysis of online breath samples of a person following the consumption of ethanol. PTR-ToF-MS comes into its own when information across a wide mass range is required, particularly when such information must be gathered in a short time during a breathing cycle. To illustrate this property, multicomponent breath analysis in a small study of cystic fibrosis patients is detailed, which provides tentative evidence that online PTR-ToF-MS analysis of tidal breath can distinguish between active infection and non-infected patients.
Found in: osebi
Keywords: Volatile Organic Compounds, breath, proton transfer reaction mass spectrometry, Cystic Fibrosis
Published: 22.07.2019; Views: 807; Downloads: 0
.pdf Fulltext (1,37 MB)

2.
Validation of an assay for the determination of levoglucosan and associated monosaccharide anhydrides for the quantification of wood smoke in atmospheric aerosol
Rebecca L Cordell, Iain R White, Paul S Monks, 2014, original scientific article

Abstract: Biomass burning is becoming an increasing contributor to atmospheric particulate matter, and concern is increasing over the detrimental health effects of inhaling such particles. Levoglucosan and related monosaccharide anhydrides (MAs) can be used as tracers of the contribution of wood burning to total particulate matter. An improved gas chromatography-mass spectrometry method to quantify atmospheric levels of MAs has been developed and, for the first-time, fully validated. The method uses an optimised, low-volume methanol extraction, derivitisation by trimethylsilylation and analysis with high-throughput gas chromatography-mass spectrometry (GC-MS). Recovery of approximately 90 % for levoglucosan, and 70 % for the isomers galactosan and mannosan, was achieved using spiked blank filters estimates. The method was extensively validated to ensure that the precision of the method over five experimental replicates on five repeat experimental occasions was within 15 % for low, mid and high concentrations and accuracy between 85 and 115 %. The lower limit of quantification (LLOQ) was 0.21 and 1.05 ng m-3 for levoglucosan and galactosan/mannosan, respectively, where the assay satisfied precisions of ≤20 % and accuracies 80-120 %. The limit of detection (LOD) for all analytes was 0.105 ng m. The stability of the MAs, once deposited on aerosol filters, was high over the short term (4 weeks) at room temperature and over longer periods (3 months) when stored at -20 °C. The method was applied to determine atmospheric levels of MAs at an urban background site in Leicester (UK) for a month. Mean concentrations of levoglucosan over the month of May were 21.4±18.3 ng m-3, 7.5±6.1 ng m-3 mannosan and 1.8±1.3 ngm-3 galactosan.
Found in: osebi
Keywords: Levoglucosan, Monosaccharide anhydrides, GC–MS, Wood burning
Published: 18.07.2019; Views: 658; Downloads: 0
.pdf Fulltext (555,64 KB)

3.
Observations of the release of non-methane hydrocarbons from fractured shale
Roberto Sommariva, Robert S Blake, Robert J Cuss, Rebecca L Cordell, Jon F Harrington, Iain R White, Paul S Monks, 2014, original scientific article

Abstract: The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.
Found in: osebi
Keywords: Environmental impact, Hydraulic fracturing, Mass spectrometry
Published: 18.07.2019; Views: 656; Downloads: 0
.pdf Fulltext (2,47 MB)

Search done in 0 sec.
Back to top