Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 129
First pagePrevious page12345678910Next pageLast page
1.
Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory
Roberta Colalillo, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gammarays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, surface detectors, extensive air shower, terrestrial gamma-ray flashes
Published in RUNG: 23.01.2024; Views: 301; Downloads: 6
.pdf Full text (1,04 MB)
This document has many files! More...

2.
3.
4.
5.
6.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Published in RUNG: 04.12.2023; Views: 431; Downloads: 3
.pdf Full text (27,92 MB)
This document has many files! More...

7.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Published in RUNG: 04.12.2023; Views: 583; Downloads: 1
.pdf Full text (1,50 MB)
This document has many files! More...

8.
Cherenkov Telescope Array Science : a multi-wavelength and multi-messenger perspective
Ulisses Barres de Almeida, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will be the major global observatory for VHE gamma-ray astronomy over the next decade and beyond. It will be an explorer of the extreme universe, with a broad scientific potential: from understanding the role of relativistic cosmic particles, to the search for dark matter. Covering photon energies from 20 GeV to 300 TeV, and with an angular resolution unique in the field, of about 1 arc min, CTA will improve on all aspects of the performance with respect to current instruments, surveying the high energy sky hundreds of times faster than previous TeV telescopes, and with a much deeper view. The very large collection area of CTA makes it an important probe of transient phenomena. The first CTA telescope has just been inaugurated in the Canary Islands, Spain, and as more telescopes are added in the coming years, scientific operation will start. It is evident that CTA will have important synergies with many of the new generation astronomical and astroparticle observatories. In this talk we will review the CTA science case from the point of view of its synergies with other instruments and facilities, highlighting the CTA needs in terms of external data, as well as the opportunities and strategies for cooperation to achieve the basic CTA science goals.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA performances, transient VHE sources, CTA science
Published in RUNG: 04.12.2023; Views: 521; Downloads: 4
.pdf Full text (1,16 MB)
This document has many files! More...

9.
The Cherenkov Telescope Array. Science Goals and Current Status
Rene A. Ong, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution (invited lecture)

Abstract: The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA), cosmic particle acceleration, astrophysics of extreme environments, physics beyond the Standard Model
Published in RUNG: 11.10.2023; Views: 531; Downloads: 7
.pdf Full text (3,28 MB)
This document has many files! More...

10.
Insight Into Lightning Initiation via Downward Terrestrial Gamma-ray Flash Observations at Telescope Array
J. Remington, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Due to the difficulty of direct measurement of the thunderstorm environment, in particular the electric field strengths, the initial stages of lightning breakdown remain mysterious. The 1994 discovery of Terrestrial Gamma-ray Flashes (TGFs) and their implications for megaVolt potentials within thunderclouds has proved to be a valuable source of information about the breakdown process. The Telescope Array Surface Detector (TASD) --- a 700 km^2 scintillator array in Western Utah, U.S.A --- coupled with a lightning mapping array, fast sferic (field change) sensor and broadband interferometer, has provided unique insight into the properties of this energetic radiation and of lightning initiation in general. In particular, microsecond-scale timing comparisons have clearly established that downward TGFs occur during strong initial breakdown pulses (IBPs) of downward negative cloud-to-ground and intracloud flashes. In turn, the IBPs are produced by streamer-based fast negative breakdown. Investigations into downward TGFs with the TASD have significantly evolved with recent upgrades to lightning instrumentation. A second state-of-the-art broadband interferometer allows high-resolution stereo observation of lightning development. A high-speed optical video camera, set to be deployed in Spring 2021, will allow simultaneous observation of the visual component of lightning responsible for TGF production. Finally, a suite of ground based static electric field mills will provide new information on the large-scale properties of the thunderstorms in which downward TGFs arise. In this talk, we present the most recent TGF observations from the Telescope Array.
Keywords: Telescope Array, ground array, ultra-high energy, cosmic rays, photons, terrestrial gamma-ray flashes, gamma-rays, lightning
Published in RUNG: 02.10.2023; Views: 525; Downloads: 6
.pdf Full text (2,76 MB)
This document has many files! More...

Search done in 0.06 sec.
Back to top