Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


21 - 30 / 40
First pagePrevious page1234Next pageLast page
21.
Chemical Instability of an Interface between Silver and Bi2Se3 Topological Insulator at Room Temperature
Katja Ferfolja, Matjaž Valant, Iuliia Mikulska, Sandra Gardonio, Mattia Fanetti, 2018, original scientific article

Abstract: Understanding an interaction at an interface between a topological insulator and a metal is of critical importance when designing electronic and spintronic devices or when such systems are used in catalysis. In this paper, we report on a chemical instability of the interface between Bi2Se3 and Ag studied by X-ray powder diffraction and electron microscopy. We present strong experimental evidence of a redox solid-state reaction occurring at the interface with kinetics that is significant already at room temperature. The reaction yields Ag2Se, AgBiSe2, and Bi. The unexpected room-temperature chemical instability of the interface should be considered for all future theoretical and applicative studies involving the interface between Bi2Se3 and Ag.
Keywords: topological insulators, Ag, thin metal films, interfaces, redox reaction
Published in RUNG: 17.06.2020; Views: 2829; Downloads: 0
This document has many files! More...

22.
Interplay among Work Function, electronic structure and stoichiometry in nanostructured VOx films
2020, original scientific article

Abstract: The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the interface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature Supersonic Cluster Beam Deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in-situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V3d-O2p and V3d-V4s hybridization which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications
Keywords: work function, VOx, Electronic structure, nanostructured films
Published in RUNG: 24.02.2020; Views: 2531; Downloads: 0
This document has many files! More...

23.
STUDY OF ELECTRONIC STATES OF THIN METAL FILMS ON HEAVY METAL SURFACES : MASTER'S THESIS
Luka Novinec, 2018, master's thesis

Abstract: V magistrskem delu smo se osredoto£ili na pripravo in karakterizacijo heterogenih ve£plastnih tankih filmov sestavljenih iz kovin ter teºkih kovin. Za izdelavo vzorcev smo izbrali dve feromagnetni kovini, Fe in Gd, ter eno divalentno kovino iz redkih zemelj, Yb. Tanke filme smo nana²ali na kristalno povr²ino volframa W(110) ter molibdena Mo(110). V primeru Fe na povr²ini W(110) in Mo(110) ter Yb na pov²ini Mo(110) smo uspe²no dolo£ili pogoje, potrebne za nana²anje atomsko enakomernih filmov. S pomo £jo kotno odvisne fotoemisije smo preu£evali kvantna stanja v Fe in Yb filmih na Mo in W kristalih. Celotno eksperimentalno delo je potekalo na ºarkovnih linijah VUV-Photoemission in²tituta (ISM-CNR) ter BaDElPh pri sinhrotronu Elettra v Trstu.
Keywords: electronic states, thin metal films, heavy metal surfaces
Published in RUNG: 04.12.2019; Views: 3912; Downloads: 105
.pdf Full text (25,10 MB)

24.
Photoactive nanocomposite thin films on glass and thermosensitive substrates
Nives Vodišek, 2019, doctoral dissertation

Abstract: Photocatalysis is a well-known process for the last few decades; it is predominantly used for water and air purification, but also for self-cleaning and antibacterial surfaces. The photocatalytic process is one of the advanced oxidation processes, where semiconductors are mainly used as photocatalysts. The most known and used semiconductor is nanosized titania, which can non-selectively decompose organic matters. One of the side effects of nano TiO2 under UV irradiation is photoinduced hydrophilicity, which furthermore improves the self-cleaning effect. The main drawback of TiO2 is that for its activation UV light is needed, which represents only 5 percent of the solar spectrum. Consequently, actinic irradiance power is low and the response of photocatalyst is limited. Novel approaches are being introduced to improve TiO2 response to visible light such as doping, coupling, modification of surface morphology and others. The thesis consists of five principal chapters. The first chapter is focused on a short literature review and explanation of some basic terms and principles that are related to this thesis. The aim of the research was to prepare transparent photocatalytically active thin films on glass and thermosensitive substrates. Four thermosensitive substrates were used: polyvinyl chloride (PVC) foil, polymethyl methacrylate (PMMA) sheet and polyester (PES) fabric coated with a polyvinyl and acrylic coating, with (D1) or without (D2) an additional polyvinylidene fluoride topcoat. The synthesis of films was modified with the introduction of zirconium aiming at improving the photocatalytic activity of the TiO2 films, and the final films had a SiO2 phase present for increased mechanical robustness. The third chapter is dedicated to the experimental part of the thesis. The detailed process of synthesis is described. The sol-gel process was used to prepare initial Ti-Zr sols, colloidal aqueous solutions with TiO2 and ZrO2 nanoparticles derived from titanium and zirconium alkoxides. The four different Ti-Zr sols were prepared with 0, 5, 10 and 20 molar % of Zr according to Ti. The depositing solution was prepared by mixing Ti-Zr sol, SiO2 sol binder, 1-propanol and 2-propoxyethanol, and then thin films were deposited by dip-coating technique. After the deposition, samples did not require high-temperature calcination since the photocatalytic anatase phase was present already after drying the deposited layers. Coated glass slides were put into a furnace at 150 °C, while samples on thermosensitive substrates were just treated by a heat gun. Samples in powder and thin film form were characterized by UV-Vis, FTIR-ATR and laser beam deflection spectroscopy, X-ray diffraction, scanning electron microscopy and thermal analysis. One of the main aspects of the photocatalyst is its activity. Photocatalytic activity of the thin films was determined, either quantitatively by the formation of fluorescent hydroxyterephthalic acid, one of the first degradation products of terephthalic acid deposit, or qualitatively by a visual-based method where degradation of resazurin ink was observed. Two additional methods were used on glass samples, electron paramagnetic resonance, and degradation of methyl stearate by observing the change in water contact angle under UVA irradiation. Mechanical stability of films on various substrates is an essential factor, describing how successful was immobilization of the photocatalytic materials on the substrate. It was determined by the pencil hardness test, i.e., Wolff-Wilborn method. In the fourth chapter, titled “Results and Discussion,” the most important part of the thesis is placed. Materials characterization and associated discussion of the results are divided into three major parts: i) powder samples characterization; ii) characterization of thin films on a glass substrate, and iii) characterization of films on thermosensitive substrates. In the conclusions, the main findings of the Ph.D. research work are summarized. One of our initial hypotheses was disapproved, thin films were not more active with a higher content of zirconium. However, they were more durable. All the obtained films were transparent and photoactive, despite the low-temperature synthesis procedure. Besides commonly used glass substrate, immobilization on thermosensitive substrates was also successful.
Keywords: glass substrate, immobilization, nanocomposite, nanomaterials, PES, photocatalysis, PMMA, PVC, self-cleaning surfaces, silica, plastic substrates, thin films, titania, zirconia
Published in RUNG: 14.10.2019; Views: 3838; Downloads: 183
.pdf Full text (6,23 MB)

25.
26.
27.
28.
Determination of bioavailable Fe redox fractions of sediment pore waters by DGT passive sampling and BDS detection
Hanna Budasheva, Dorota Korte, Arne Bratkič, Mladen Franko, 2019, published scientific conference contribution abstract

Abstract: The bioavailability and toxicity of contaminants in sediments to benthic organisms depend on the speciation of the contaminant [1]. The level of iron supply to sediments creates contrasting chemical pathways, each producing distinctive mineral assemblag- es. Reliable measurement of Fe redox species (Fe2+ and Fe3+) in sediments is essential for studies of pollutants or trace-element cycling. This is, however, a difficult task, because the distribution of chemical species often changes during sampling and storage. In this work the Diffusive Gradients in Thin-films technique (DGT) is investigated as a passive sampling approach used in combination with photothermal beam deflection spectroscopy (BDS) as a detection method for determination of labile Fe-redox species in sediments and natural waters. DGT offers the advantage of pre-concentration of labile (i.e. bioavailable) Fe species from the total dissolved Fe pool in sediment pore waters [2]. The advantage of using BDS [3-4] is also in avoiding contamination by using additional steps as extraction or pre-concentration. Furthermore, combined DGT-BDS provides 2D information about distribution of Fe2+ and the total Fe content in the resin hydrogels [5]. The goal of this research is to show the repeatability of this technique for determining trace amounts of Fe redox species in environmental samples.
Keywords: beam deflection spectrometry, diffusive gradients in thin-films, iron species
Published in RUNG: 16.07.2019; Views: 3338; Downloads: 0
This document has many files! More...

29.
30.
Search done in 0.05 sec.
Back to top