Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural Central Europe
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, 2024, original scientific article

Abstract: Abstract. Recent years have seen an increase in the use of wood for energy production of over 30 %, and this trend is expected to continue due to the current energy crisis and geopolitical instability. At present, residential wood burning (RWB) is one of the most important sources of organic aerosols (OA) and black carbon (BC). While BC is recognized for its large light absorption cross-section, the role of OA in light absorption is still under evaluation due to their heterogeneous composition and source-dependent optical properties. Studies that characterize wood-burning aerosol emissions in Europe typically focus on urban and background sites and only cover BC properties. However, RWB is more prevalent in rural areas, and the present scenario indicates that an improved understanding of the RWB aerosol optical properties and their subsequent connection to climate impacts is necessary for rural areas. We have characterized atmospheric aerosol particles from a central European rural site during wintertime in the village of Retje in Loški Potok, Slovenia, from 01.12.2017 to 07.03.2018. The village experienced extremely high aerosol concentrations produced by RWB and near-ground temperature inversion. The isolated location of the site and the substantial local emissions made it an ideal laboratory-like place for characterizing RWB aerosols with low influence from non-RWB sources under ambient conditions. The mean mass concentrations of OA and BC were 34.8 µg m-3 (max = 271.8 µg m-3) and 3.1 µg m-3 (max = 24.3 µg m-3), respectively. The mean total particle number concentration (10–600 nm) was 9.9 x 103 particles cm-3 (max = 53.5 x 103 particles cm-3). The mean total light absorption coefficient at 370 nm and 880 nm measured by an Aethalometer AE33 were 122.8 Mm-1 and 15.3 Mm-1 and had maximum values of 1103.9 Mm-1 and 179.1 Mm-1, respectively. The aerosol concentrations and absorption coefficients measured during the campaign in Loški Potok were significantly larger than those reported values for several urban areas in the region with larger populations and extent of aerosol sources. Here, considerable contributions from brown carbon (BrC) to the total light absorption were identified, reaching up to 60 % and 48 % in the near UV (370 nm) and blue (470 nm) wavelengths. These contributions are up to three times higher than values reported for other sites impacted by wood-burning emissions. The calculated mass absorption cross-section and the absorption Ångström exponent for RWB OA were MACOA, 370 nm= 2.4 m2 g-1, and AAEBrC, 370–590 nm= 3.9, respectively. Simple forcing efficiency (SFE) calculations were performed as a sensitivity analysis to evaluate the climate impact of the RWB aerosols produced at the study site by integrating the optical properties measured during the campaign. The SFE results show a considerable forcing capacity from the local RWB aerosols, with a high sensitivity to OA absorption properties and a more substantial impact over bright surfaces like snow, typical during the coldest season with higher OA emissions from RWB. Our study's results are highly significant regarding air pollution, optical properties, and climate impact. The findings suggest that there may be an underestimation of RWB emissions in rural Europe and that further investigation is necessary.
Keywords: wood-burning aerosols, optical characterization, black carbon, rural areas
Published in RUNG: 10.01.2024; Views: 427; Downloads: 6
.pdf Full text (1,99 MB)
This document has many files! More...

2.
Substantial brown carbon emissions from wintertime residential wood burning over France
Yunjiang Zhang, Alexandre Albinet, Jean-Eudes Petit, Véronique Jacob, Florie Chevrier, Gregory Gille, Sabrina Pontet, Eve Chrétien, Marta Dominik-Sègue, Gilles Levigoureux, Griša Močnik, Valérie Gros, Jean-Luc Jaffrezo, Olivier Favez, 2020, original scientific article

Abstract: Brown carbon (BrC) is known to absorb light at subvisible wavelengths but its optical properties and sources are still poorly documented, leading to large uncertainties in climate studies. Here, we show its major wintertime contribution to total aerosol absorption at 370 nm (18–42%) at 9 different French sites. Moreover, an excellent correlation with levoglucosan (r2 = 0.9 and slope = 22.2 at 370 nm), suggesting important contribution of wood burning emissions to ambient BrC aerosols in France. At all sites, BrC peaks were mainly observed during late evening, linking to local intense residential wood burning during this time period. Furthermore, the geographic origin analysis also highlighted the high potential contribution of local and/or small-regional emissions to BrC. Focusing on the Paris region, twice higher BrC mass absorption efficiency value was obtained for less oxidized biomass burning organic aerosols (BBOA) compared to more oxidized BBOA (e.g., about 4.9 ± 0.2 vs. 2.0 ± 0.1 m2 g−1, respectively, at 370 nm). Finally, the BBOA direct radiative effect was found to be 40% higher when these two BBOA fractions are treated as light-absorbing species, compared to the non-absorbing BBOA scenario.
Keywords: Brown carbon, Multi sites, Residential wood burning, Mass absorption efficiency, France
Published in RUNG: 20.07.2020; Views: 2930; Downloads: 0
This document has many files! More...

3.
Validation of an assay for the determination of levoglucosan and associated monosaccharide anhydrides for the quantification of wood smoke in atmospheric aerosol
Rebecca L Cordell, Iain R. White, Paul S Monks, 2014, original scientific article

Abstract: Biomass burning is becoming an increasing contributor to atmospheric particulate matter, and concern is increasing over the detrimental health effects of inhaling such particles. Levoglucosan and related monosaccharide anhydrides (MAs) can be used as tracers of the contribution of wood burning to total particulate matter. An improved gas chromatography-mass spectrometry method to quantify atmospheric levels of MAs has been developed and, for the first-time, fully validated. The method uses an optimised, low-volume methanol extraction, derivitisation by trimethylsilylation and analysis with high-throughput gas chromatography-mass spectrometry (GC-MS). Recovery of approximately 90 % for levoglucosan, and 70 % for the isomers galactosan and mannosan, was achieved using spiked blank filters estimates. The method was extensively validated to ensure that the precision of the method over five experimental replicates on five repeat experimental occasions was within 15 % for low, mid and high concentrations and accuracy between 85 and 115 %. The lower limit of quantification (LLOQ) was 0.21 and 1.05 ng m-3 for levoglucosan and galactosan/mannosan, respectively, where the assay satisfied precisions of ≤20 % and accuracies 80-120 %. The limit of detection (LOD) for all analytes was 0.105 ng m. The stability of the MAs, once deposited on aerosol filters, was high over the short term (4 weeks) at room temperature and over longer periods (3 months) when stored at -20 °C. The method was applied to determine atmospheric levels of MAs at an urban background site in Leicester (UK) for a month. Mean concentrations of levoglucosan over the month of May were 21.4±18.3 ng m-3, 7.5±6.1 ng m-3 mannosan and 1.8±1.3 ngm-3 galactosan.
Keywords: Levoglucosan, Monosaccharide anhydrides, GC–MS, Wood burning
Published in RUNG: 18.07.2019; Views: 2666; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top