Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 12
First pagePrevious page12Next pageLast page
1.
2.
Structure and activity of the Cdc45-Mcm2-7-GINS (CMG) complex, the replication helicase
Barbara Medagli, Patrizia Di Crescenzio, Matteo De March, Silvia Onesti, 2016, independent scientific component part or a chapter in a monograph

Keywords: eukaryotic DNA replication, archaeal DNA replication, cancer diagnostic
Published in RUNG: 03.03.2021; Views: 2032; Downloads: 36
URL Link to full text
This document has many files! More...

3.
4.
Covalent Calix[4]arene Nanocapsules for Efficient Camptothecin Delivery
Dinesh Shetty, Tina Skorjanc, Ali Trabolsi, 2019, published scientific conference contribution abstract

Keywords: drug delivery, calixarene, nanocapsule, self-assembly, camptothecin, breast cancer
Published in RUNG: 10.09.2020; Views: 2525; Downloads: 0
This document has many files! More...

5.
DEVELOPMENT OF A NOVEL PCR-BASED ASSAY FOR HIGH-RISK HUMAN PAPILLOMAVIRUS DETECTION AND GENOTYPING IN SELF COLLECTED CERVICOVAGINAL SAMPLES: A NEW POSSIBILITY FOR THE CERVICAL CANCER SCREENING
Alice Avian, 2020, doctoral dissertation

Abstract: Human Papillomavirus (HPV) infection is the causative agent for the invasive cervical cancer and its precancerous lesions, furthermore, there are growing evidences of HPV being a relevant factor in other anogenital cancers as well as head and neck cancers. Most sexually active women become infected with HPV at least once in their lifetime, but less than 10% of women becomes persistently infected, and it is precisely the persistent infection that contributes to the development of cervical cancer. The preventive effect of cervical cancer screening largely depends in the high women participation and coverage; indeed, a large number of cervical cancers diagnoses normally arise among under-screened and unscreened women. Increase in the screening coverage is essential to improve the effectiveness of cervical screening programmes. The main purpose of this PhD project was to solve some of the most relevant problems in the cervical cancer screening programmes, as the increase of cost-effectiveness and the amelioration of the screening coverage. My work was focused on the development and validation of the first Ulisse BioMed S.p.A. product, the HPV Selfy™ test, an innovative PCR-based kit for the direct detection and genotyping of 12 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59) and 2 possible/probable high-risk (66 and 68), specifically optimized for the analysis of self-collected vaginal specimens. The core of this innovative test is based on high-resolution melting (HRM) analysis, a recently developed technique for fast, high-throughput post-PCR analysis of variance in nucleic acid sequences, that characterizes the amplicons by studying thermal denaturation of double-stranded DNA. Based on this approach and through the design of different HPV type-specific primer pairs and the development of a specific master mix, unique melting peaks in a single fluorescence channel were obtained, allowing the multiple detection and genotyping of 14 HPV types in a single PCR well. Three different clinical studies have been carried out to validate the assay on the vaginal self-collected samples with truly amazing results regarding the assay’s performance, but also for self-sampling acceptability by women. Moreover, data collected in these studies suggest a future possible use of this test for the hard-to-reach women, as an alternative of the conventional clinician-collected sample, in order to increase the cervical cancer screening coverage.
Keywords: Human Papillomavirus, HPV test, cervical cancer screening, prevention, diagnostic test, High resolution melting, HRM, genotyping, PCR, Self-sampling, clinical validation.
Published in RUNG: 17.06.2020; Views: 3352; Downloads: 105
.pdf Full text (37,88 MB)

6.
7.
Connective tissue and diseases: from morphology to proteomics towards the development of new therapeutic appproach
Daniela Quaglino, Federica Boraldi, Giulia Annovi, Deanna Guerra, Ivonne Pasquali Ronchetti, 2009, review article

Abstract: Connective tissue consists of cells separated by the extracellular matrix, whose composition and amount vary according to age, to functional requirements, and to the presence of pathologic conditions. Within this non-random macromolecular assembly, collagens, elastin, proteoglycans and structural glycoproteins are mutually interdependent and modifications of one component, by extrinsic (environmental) and/or intrinsic (systemic, genetic, age-related) factors, may have consequences on the tissue as a whole. Since decades, different microscopical techniques have been applied mainly for diagnostic purposes and for detailed descriptions of changes occurring in cells and in matrix components. More recently, in order to dissect the molecular complexity of the matrix network, to analyse the interactions between cells and matrix and to look for modulators of cell phenotype, histomorphologic investigations have been implemented with proteomic studies that allow to identify possible diagnostic markers, and to better understand patho-mechanisms enabling the design of novel therapeutic strategies. Therefore, the progressively expanding, although incomplete, knowledge on connective tissue biology, sheds new light on the pathogenesis of diseases affecting single molecules (i.e. collagenopathies, mucopolysaccharidoses, elastinopathies) and discloses the importance of matrix components as fundamental regulators of cell phenotype, in relation, for instance, to the aging process and/or to cancer development and progression. Few examples will be presented demonstrating the promises of proteomics as a technique leading to the discovery of new therapies and possibly to the development of individualized treatments for a better patient care.
Keywords: pathology, proteomics, fibrosis, rheumatology, cancer
Published in RUNG: 23.08.2019; Views: 2857; Downloads: 0
This document has many files! More...

8.
9.
10.
Nanobody technology: principles & applications
Ario De Marco, invited lecture at foreign university

Abstract: Antibodies possess unattainable capacity to bind selectively and at high affinity their cognates. For this reason they have been largely used in applications which rely on specific molecular recognition. Biosensors, nanoparticles, and even cells can be functionalized with antibodies for improving sensitivity and target specificity. However, conventional antibodies (IgGs) are large molecules (150 kDa) that are difficult to engineer. In the last years, antibody fragments have become more and more popular as an effective alternative and specifically nanobodies raised enthusiasm because of their minimal mass (14 kDa), high stability, relative similarity to human sequences, and simplified mutagenesis. Pre-immune nanobody libraries have the further advantage of enabling blind selection for antigens that can be used to discriminate between subpopulations of cells and vesicles. The panning can be performed directly on intact cells and the resulting binders are specific for the native antigen conformation
Keywords: Nanobodies, in vitro panning, cancer biomarkers, recombinant antibody engineering
Published in RUNG: 03.05.2017; Views: 4856; Downloads: 0
This document has many files! More...

Search done in 0.05 sec.
Back to top