Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


1 - 4 / 4
First pagePrevious page1Next pageLast page
Gabrijela Zaharijas, B. L. Winer, 2016, original scientific article

Abstract: The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1–100 GeV from a 15° × 15° region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner ∼1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15° × 15° region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
Found in: ključnih besedah
Summary of found: ...separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas... ...particles interacting with the interstellar gas and radiation fields in the Milky Way into that...
Keywords: cosmic rays – Galaxy: center – gamma-rays: general – gamma-rays: ISM – radiation mechanisms: non-thermal
Published: 02.03.2016; Views: 2362; Downloads: 176
.pdf Fulltext (6,36 MB)

Analysis and characterization of thermal systematic effects on the PLANCK LFI data
Tanja Petrushevska, 2010, master's thesis

Abstract: The cosmic microwave background radiation discovered by Penzias and Wilson in 1965, is considered one of the most important experimental evidences in favour of the Hot Big Bang standard cosmological model. This radiation provides an image of the Universe when it was about 380,000 years old and has a blackbody spectral distribution at temperature T=2.725±0.002 K, index of thermodynamic equilibrium with the mater in epoch when it was released. The cosmic background radiation presents anisotropies at level of 10 5 which provide valuable information about the origin and the evolution of the Universe. After the discovery of background radiation, tens of experiments have been performed to measure this radiation and its anisotropies. In 1992 the COBE satellite revolutionized cosmology by detecting temperature anisotropies for the first time. Launched on May 14, 2009, Planck is a European Space Agency mission designed to measure the CMB anisotropies with an accuracy set by fundamental astrophysical limits. To do this, Planck is imaging the whole sky with an unprecedented combination of sensitivity ( ΔT/T~2*10^-6), angular resolution (to 5’), and 9 frequency coverage (30 857 GHz). To reach these ambitious requirements, Planck uses an active cryogenic thermal system which cools the instruments to 0.1 K. The high sensitivity of the instrument and the cryogenic system makes the thermal systematic effects study of crucial importance to the scientific success. The thesis is divided into six chapters: 1. Chapter 1 explains the properties of the cosmic background radiation and its anisotropies; 2. Chapter 2 presents a short overview of the various experiments dedicated to the study of cosmic background radiation; 3. Chapter 3 describes the Planck mission, its instruments and its goals, in particular the Low Frequency Instrument (LFI) and its thermal structure; Chapter 4 discusses the analysis of the LFI thermal stability. This work was carried out in the Physics department at the University of Trieste, at the LFI Data Processing Centre located at INAF (Instituto Nazionale di AstroFisica) - OATS (Astronomical Observatory of Trieste); Chapter 5 presents the results of this analysis; in Chapter 6 conclusions are drawn and proposals for future work are discussed.
Found in: ključnih besedah
Summary of found: ...The cosmic microwave background radiation discovered by Penzias and...
Keywords: Cosmic background radiation, CMB, Planck, satellite mission
Published: 24.01.2018; Views: 985; Downloads: 42
.pdf Fulltext (23,33 MB)

Search for Anisotropy in the Ultra High Energy Cosmic Ray Spectrum using the Telescope Array Surface Detector
J. P. Lundquist, R.U. Abbasi, 2017, other component parts

Abstract: The Telescope Array (TA) experiment is located in the western desert of Utah, USA, and observes ultra high energy cosmic rays (UHECRs) in the Northern hemisphere. At the highest energies, E>10~EeV, the shape of cosmic ray energy spectrum may carry an imprint of the source density distribution along the line of sight different in different directions of the sky. In this study, we search for such directional variations in the shape of the energy spectrum using events observed with the Telescope Array's surface detector. We divide the TA field of view into two nearly equal-exposure regions: the "on-source" region which we define as ±30∘ of the supergalactic plane containing mostly nearby structures, and the complementary "off-source" region where the sources are further away on average. We compare the UHECR spectra in these regions by fitting them to the broken power law and comparing the resulting parameters. We find that the off-source spectrum has an earlier break at highest energies. The chance probability to obtain such or larger difference in statistically equivalent distributions is estimated as 6.2±1.1×10−4 (3.2σ) by a Monte-Carlo simulation. The observed difference in spectra is in a reasonable quantitative agreement with a simplified model that assumes that the UHECR sources trace the galaxy distribution from the 2MRS catalogue, primary particles are protons and the magnetic deflections can be neglected.
Found in: ključnih besedah
Summary of found: ...cosmic radiation: UHE, detector: surface, cosmic radiation: spectrum, cosmic...
Keywords: cosmic radiation: UHE, detector: surface, cosmic radiation: spectrum, cosmic radiation: energy spectrum, deflection: magnetic, numerical calculations: Monte Carlo, anisotropy
Published: 27.04.2020; Views: 437; Downloads: 21
.pdf Fulltext (169,05 KB)

TA Anisotropy Summary
J. P. Lundquist, K. Kawata, 2019, published scientific conference contribution

Abstract: The Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) detector in the northern hemisphere. It consists of an array of 507 surface detectors (SD) covering a total 700 km^2 and three fluorescence detector stations overlooking the SD array. In this proceedings, we summarize recent results on the search for directional anisotropy of UHECRs using the latest dataset collected by the TA SD array. We obtained hints of the anisotropy of the UHECRs in the northern sky from the various analyses.
Found in: ključnih besedah
Summary of found: ...Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) detector in the northern hemisphere. It... ...cosmic radiation, UHE detector, fluorescence detector, surface,Telescope Array Experiment,...
Keywords: cosmic radiation, UHE detector, fluorescence detector, surface, Telescope Array Experiment, anisotropy, experimental results
Published: 28.04.2020; Views: 445; Downloads: 18
.pdf Fulltext (1,88 MB)

Search done in 0 sec.
Back to top