Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Strongly Lensed Supernovae in Well-Studied Galaxy Clusters with the Vera C. Rubin Observatory
Tanja Petrushevska, 2020, original scientific article

Abstract: Strong lensing by galaxy clusters can be used to significantly expand the survey reach, thus allowing observation of magnified high-redshift supernovae that otherwise would remain undetected. Strong lensing can also provide multiple images of the galaxies that lie behind the clusters. Detection of strongly lensed Type Ia supernovae (SNe Ia) is especially useful because of their standardizable brightness, as they can be used to improve either cluster lensing models or independent measurements of cosmological parameters. The cosmological parameter, the Hubble constant, is of particular interest given the discrepancy regarding its value from measurements with different approaches. Here, we explore the feasibility of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) of detecting strongly lensed SNe in the field of five galaxy clusters (Abell 1689 and Hubble Frontier Fields clusters) that have well-studied lensing models. Considering the 88 systems composed of 268 individual multiple images in the five cluster fields, we find that the LSST will be sensitive to SNe Ia (SNe IIP) exploding in 41 (23) galaxy images. The range of redshift of these galaxies is between 1.01 < z < 3.05. During its 10 years of operation, LSST is expected to detect 0.2 ± 0.1 SN Ia and 0.9 ± 0.3 core collapse SNe. However, as LSST will observe many more massive galaxy clusters, it is likely that the expectations are higher. We stress the importance of having an additional observing program for photometric and spectroscopic follow-up of the strongly lensed SNe detected by LSST.
Found in: ključnih besedah
Summary of found: ...supernovae, strong gravitational lensing, galaxy clusters...
Keywords: supernovae, strong gravitational lensing, galaxy clusters
Published: 28.11.2020; Views: 129; Downloads: 5
.pdf Fulltext (863,97 KB)

2.
Search for Physics beyond the Standard Model with the CRESST Experiment
2017, master's thesis

Abstract: In spite of the successes of observational astro- and particle physics and cosmology very much of the universe remains unknown. The Standard Model of particle physics is a theory describing the electromagnetic, weak, and strong nuclear interactions, as well as classifying all the subatomic particles known. But there is overwhelming evidence, that all the known particles, the ordinary (baryonic) matter, the building blocks of planets, stars and ourselves, only make up about 4.9% of the energy content of the universe. The standard model of cosmology (CDM) indicates that the total mass-energy of the universe contains beside the 4.9% ordinary matter two other components: 26.8% dark matter and 68.3% dark energy. The accelerating expansion of the Universe is the result of the effect of the dark energy with its most simple form given by a cosmological constant in Einstein's Equation. Dark matter is an unidentified type of matter that is not accounted for by dark energy and neutrinos and is generally believed to be a non-relativistic, charge neutral and non-baryonic new form of matter. Although dark matter has not been directly observed yet, its existence and properties are inferred from its gravitational effects such as the motions of visible matter, gravitational lensing, its influence on the universe's large-scale structure, and its effects in the cosmic microwave background. Thus the search for Dark Matter is the search for physics beyond the standard model. Although the nature of dark matter is yet unknown, its presence is crucial to understanding the future of the universe. The CRESST experiment is searching for direct evidence in the form of a nuclear recoil induced on a scintillating CaWO4 crystal by a dark matter particle, and is installed and taking data underground at Laboratory Nazionali del Gran Sasso (LNGS) in Italy. While both, dark energy and dark matter, have not been detected directly, a class of dark matter particles that interact only via gravity and the weak force, referred to asWeakly Interacting Massive Particles (WIMPs), has been established as the leading candidate among the dark matter community. For this thesis a special model of dark matter was studied, namely the dark photon. This thesis provides a detailed description of the calculation of the 90% upper limit on the dark photon kinetic mixing based on data from the second phase of the CRESST experiment. The analysis was carried out in a frequentist approach based on the (unbinned) maximum-likelihood method and likelihood ratios. To make a statement about the calculated result and its quality, the used algorithm had to be tested, what was done with Monte Carlo simulations (pseudo data).
Found in: ključnih besedah
Summary of found: ...existence and properties are inferred from its gravitational effects such as the motions of visible... ...as the motions of visible matter, gravitational lensing, its influence on the universe's large-scale structure,...
Keywords: astro physics, particle physics, cosmology, universe, Standard Model of particle physics, standard model of cosmology, matter, ordinary matter, dark matter, dark energy, accelerating expansion of the Universe, non-baryonic, new form of matter, gravitational lensing, cosmic microwave background, search for physics beyond the standard model, CRESST experiment, direct detection, CaWO4 crystal, underground laboratory, Laboratory Nazionali del Gran Sasso, Weakly Interacting Massive Particles, WIMP, dark photon, 90% upper limit, upper limit, kinetic mixing, frequentist approach, unbinned, maximum likelihood
Published: 13.10.2017; Views: 1659; Downloads: 0
.pdf Fulltext (10,71 MB)

3.
SEARCH FOR LENSED SUPERNOVAE BY MASSIVE GALAXY CLUSTERS WITH THE 2.5m NORDIC OPTICAL TELESCOPE
Tanja Petrushevska, 2013, published scientific conference contribution

Abstract: We shortly present here the ongoing project by the Stockholm supernova group about the search of high-z supernovae with the ALFOSC camera at the Nordic Optical Telescope by using galaxy clusters as gravitational telescope.
Found in: ključnih besedah
Summary of found: ...Nordic Optical Telescope by using galaxy clusters as gravitational telescope....
Keywords: gravitational telescopes, Abell 1689, galaxy clusters, telescopes, lensed supernovae, strong lensing
Published: 23.01.2018; Views: 1269; Downloads: 0
.pdf Fulltext (59,07 KB)
This document has many files! More...

4.
High-redshift supernova rates measured with the gravitational telescope A 1689
Tanja Petrushevska, R. Amanullah, Ariel Goobar, S. Fabbro, Joel Johansson, Tor Kjellsson, Chris Lidman, K. Paech, Johan Richard, H. Dahle, Raphael Ferretti, J.P. Kneib, M. Limousin, Jakob Nordin, V. Stanishev, 2016, original scientific article

Abstract: Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 < z < 1.703 and magnifications in the range ∆m = −0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high redshifts, z ∼ 3, albeit for a limited region of space. We present a study of the core-collapse supernova rates for 0.4 ≤ z < 2.9, and find good agreement with previous estimates and predictions from star formation history. During our survey, we also discovered two Type Ia supernovae in A 1689 cluster members, which allowed us to determine the cluster Ia rate to be 0.14+0.19 −0.09 ± 0.01 SNuB h 2 (SNuB ≡ 10−12 SNe L −1 ,B yr−1), where the error bars indicate 1σ confidence intervals, statistical and systematic, respectively. The cluster rate normalized by the stellar mass is 0.10+0.13 −0.06 ± 0.02 in SNuM h 2 (SNuM ≡ 10−12 SNe M−1 yr−1). Furthermore, we explore the optimal future survey for improving the core-collapse supernova rate measurements at z & 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions. Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe.
Found in: ključnih besedah
Summary of found: ...−0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power...
Keywords: supernovae: general – gravitational lensing: strong – galaxies: star formation – galaxies: clusters: individual: A 1689 – techniques: photometric
Published: 23.01.2018; Views: 1159; Downloads: 0
.pdf Fulltext (2,64 MB)

5.
Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4
Tanja Petrushevska, Rahman Amanullah, Mattia Bulla, Markus Kromer, Raphael Ferretti, Ariel Goobar, Semeli Papadogiannakis, 2017, original scientific article

Abstract: Context. The light from distant supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at −5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at λ ∼ 3500 Å, which is present only to a lesser extent in individual low- and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.
Found in: ključnih besedah
Summary of found: ...supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along...
Keywords: supernovae: individual: PS1-10afx – gravitational lensing: strong – supernovae: general
Published: 23.01.2018; Views: 1200; Downloads: 0
.pdf Fulltext (1,00 MB)

6.
Supernovae seen through gravitational telescopes
Tanja Petrushevska, 2017, doctoral dissertation

Abstract: Gravitational lenses such as galaxies and galaxy clusters, can magnify the flux of background galaxies. These galaxies at high redshift can host supernovae (SNe) which, thanks to the magnification boost due to lensing, can be observed, otherwise too faint to be detected by current telescopes. Under the right circumstances, the background galaxies may also have multiple images due to the strong lensing. Of particular interest is to detect lensed supernovae of type Ia (SNe Ia), because of their standard brightness. They could help improve lensing models and, if multiple images are observed, the Hubble constant can be measured independently. In this thesis, we use galaxy clusters as gravitational telescopes to search for lensed SNe at high redshift. We performed ground-based, near-infrared and optical search campaigns towards the massive clusters Abell 1689 and 370, which are among the most powerful gravitational telescopes known. Our search resulted in the discovery of five photometrically classified, core- collapse SNe at redshifts of 0.671 < z < 1.703 with significant magnification from the cluster. Owing to the power of the lensing cluster, we calculated the volumetric core-collapse SN rates for 0.4  z < 2.9, and find good agreement with previous estimates and predictions from cosmic star formation history. During our survey, we also discovered two SNe Ia in A1689 cluster members, which allowed us to determine the cluster Ia rate. Furthermore, we discuss the expectations of finding lensed SNe at high redshift in simulated search campaigns that can be conducted with upcoming ground- and space-based telescopes. Magnification from a galaxy lens also allows for detailed studies of the SN properties at high redshift that otherwise would not be possible. Spec- troscopic observations of lensed high-redshift SNe Ia are of particular interest since they can be used to test for evolution of the standard candle nature of these objects. However, if systematic redshift-dependent properties are found, their utility for future surveys could be challenged. We investigate whether the properties of the strongly lensed and very distant SN Ia PS1- 10afx at z = 1.4, deviates from the well-studied nearby and intermediate populations of normal SNe Ia. In other study, we report the discovery of the first resolved multiply-imaged gravitationally lensed SN Ia.
Found in: ključnih besedah
Summary of found: ...thanks to the magnification boost due to lensing, can be observed, otherwise too faint to...
Keywords: supernovae, gravitational telescopes, galaxy clusters, lensed supernovae, strong lensing, astronomical surveys and telescopes
Published: 23.01.2018; Views: 1372; Downloads: 0
.pdf Fulltext (28,31 MB)

7.
High-redshift supernova rates measured with the gravitational telescope A1689
Tanja Petrushevska, 2016, published scientific conference contribution abstract

Abstract: Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 < z < 1.703 and magnifications in the range ∆m = −0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high redshifts, z ∼ 3, albeit for a limited region of space. We present a study of the core-collapse supernova rates for 0.4 ≤ z < 2.9, and find good agreement with previous estimates and predictions from star formation history. During our survey, we also discovered two Type Ia supernovae in A 1689 cluster members, which allowed us to determine the cluster Ia rate to be 0.14+0.19 ± 0.01 SNuB h2 (SNuB ≡ −0.09 10−12 SNe L−1 yr−1 ), where the error bars indicate 1σ confidence intervals, statistical and systematic, respectively. The cluster rate ⊙,B normalized by the stellar mass is 0.10+0.13 ± 0.02 in SNuM h2 (SNuM ≡ 10−12 SNe M−1 yr−1). Furthermore, we explore the optimal −0.06 ⊙ future survey for improving the core-collapse supernova rate measurements at z 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions. Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe.
Found in: ključnih besedah
Summary of found: ...−0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power...
Keywords: supernova, gravitational telescope, galaxy clusters, Abell 1689, strong lensing
Published: 26.01.2018; Views: 1061; Downloads: 0
.pdf Fulltext (9,17 MB)

8.
Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope A370
Tanja Petrushevska, Ariel Goobar, D. J. Lagattuta, R. Amanullah, Laura Hangard, S. Fabbro, C. Lindman, K. Paech, J. Richard, J.P. Kneib, 2017, original scientific article

Abstract: Aims. Strong lensing by massive galaxy clusters can provide magnification of the flux and even multiple images of the galaxies that lie behind them. This phenomenon facilitates observations of high-redshift supernovae (SNe) that would otherwise remain undetected. Type Ia supernovae (SNe Ia) detections are of particular interest because of their standard brightness, since they can be used to improve either cluster lensing models or cosmological parameter measurements. Methods. We present a ground-based, near-infrared search for lensed SNe behind the galaxy cluster Abell 370. Our survey was based on 15 epochs of J-band observations with the HAWK-I instrument on the Very Large Telescope (VLT). We use Hubble Space Telescope (HST) photometry to infer the global properties of the multiply-imaged galaxies. Using a recently published lensing model of Abell 370, we also present the predicted magnifications and time delays between the images. Results. In our survey, we did not discover any live SNe from the 13 lensed galaxies with 47 multiple images behind Abell 370. This is consistent with the expectation of 0.09 ± 0.02 SNe calculated based on the measured star formation rate. We compare the expectations of discovering strongly lensed SNe in our survey and that performed with HST during the Hubble Frontier Fields (HFF) programme. We also show the expectations of search campaigns that can be conducted with future facilities, such as the James Webb Space Telescope (JWST) or the Wide-Field Infrared Survey Telescope (WFIRST). We show that the NIRCam instrument aboard the JWST will be sensitive to most SN multiple images in the strongly lensed galaxies and thus will be able to measure their time delays if observations are scheduled accordingly.
Found in: ključnih besedah
Summary of found: ...Aims. Strong lensing by massive galaxy clusters can provide magnification...
Keywords: gravitational lensing: strong / supernovae: general / galaxies: clusters: individual: A 370
Published: 28.06.2018; Views: 1289; Downloads: 75
.pdf Fulltext (4,14 MB)

Search done in 0 sec.
Back to top