Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
2.
Physics behind the Conformational Transitions in Biopolymers. Demystification of DNA melting and Protein Folding
Artem V. Badasyan, invited lecture at foreign university

Abstract: Biophysics is the area of research, devoted to the studies of physical problems related to living systems. Animal cell is the smallest unit of an organism and mainly contains water solutions of structurally inhomogeneous polymers of biological origin: polypeptides (proteins) and polynucleotides (DNA, RNA). Statistical physics of macromolecules allows to describe the conformations of both synthetic and bio-polymers and constitutes the basis of Biophysics. During the talk I will report on the biophysical problems I have solved with numerical simulations (Langevin-based Molecular Dynamics of Go-like protein folding model and Monte Carlo with Wang-Landau sampling) and analytical studies of spin models (formula evaluation by hand, enforced with computer algebra systems). The direct connections with the theory of phase transitions, algebra of non-commutative operators and decorated spin models will be elucidated.
Found in: ključnih besedah
Summary of found: ...Biophysics, protein folding, helix-coil transition, spin models...
Keywords: Biophysics, protein folding, helix-coil transition, spin models
Published: 13.12.2016; Views: 1397; Downloads: 0
.pdf Fulltext (136,69 KB)

3.
New method to process Circular Dichroism experimental data on heat and cold denaturation of polypeptides in water
Artem V. Badasyan, Matjaž Valant, 2018, published scientific conference contribution abstract

Abstract: During the past decade the experimental studies of biopolymer conformations have reached an unprecedented level of detailization and allow to study single molecules in vivo [1]. Processing of experimental data essentially relies on theoretical approaches to conformational transitions in biopolymers [2]. However, the models that are currently used, originate from the early 1960's and contain several unjustified assumptions, widely accepted at that time. Thus, the view on the conformational transitions in the polypeptides as a two-state process has very limited applicability because the all-or-none transition mechanism takes place only in short polypeptides with sizes comparable to the spatial correlation length; the original formulation of Zimm-Bragg model is phenomenological and does not allow for a microscopic model for water; the implicit consideration of the water-polypeptide interactions through the ansatz about the quadratic dependence of free energy difference on temperature can only be justified through the assumption of an ideal gas with a constant heat capacity. To get rid of these deficiencies, we augment the Hamiltonian formulation [3] of the Zimm-Bragg model [4] with the term describing the water-polypeptide interactions [5]. The analytical solution of the model results in a formula, ready to be fit to Circular Dichroism (CD) data for both heat and cold denaturation. On the example of several sets of experimental data we show, that our formula results in a significantly better fit, as compared to the existing approaches. Moreover, the application of our procedure allows to compare the strengths of inter- and intra-molecular H-bonds, an information, inaccessible before. References [1] I. König, A. Zarrine-Afsar, M. Aznauryan, A. Soranno, B. Wunderlich, F. Dingfelder, J. C. Stüber, A. Plückthun, D. Nettels, B. Schuler, (2015), Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells/Nature Methods, 12, 773-779. [2] J. Seelig, H.-J. Schönfeld, (2016), Thermal protein unfolding by differential scanning calorimetry and circular dichroism spectroscopy. Two-state model versus sequential unfolding/Quarterly Reviews of Biophysics, 49, e9, 1-24. [3] A.V. Badasyan, A. Giacometti, Y. Sh. Mamasakhlisov, V. F. Morozov, A. S. Benight, (2010), Microscopic formulation of the Zimm-Bragg model for the helix-coil transition/Physical Review E, 81, 021921. [4] B. H. Zimm, J. K. Bragg, (1959), Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains/Journal of Chemical Physics, 31, 526. [5] A. Badasyan, Sh.A. Tonoyan, A. Giacometti, R. Podgornik, V.A. Parsegian, Y.Sh. Mamasakhlisov, V.F. Morozov, (2014), Unified description of solvent effects in the helix-coil transition/Physical Review E, 89, 022723. Corresponding author: Artem Badasyan (artem.badasyan@ung.si)
Found in: ključnih besedah
Summary of found: ...Microscopic formulation of the Zimm-Bragg model for the helix-coil transition/Physical Review E, 81, 021921. [4] B. H.... ...essentially relies on theoretical approaches to conformational transitions in biopolymers [2]. However, the models that are...
Keywords: Biopolymers, Circular Dichroism, Zimm-Bragg model, helix-coil transition.
Published: 22.10.2018; Views: 483; Downloads: 0
.pdf Fulltext (83,24 KB)

4.
On spin description of water-biopolymer interactions: theory and experiment of reentrant order-disorder transition.
Artem V. Badasyan, invited lecture at foreign university

Abstract: The experimental studies of biopolymer conformations have reached an unprecedented level of detailization during the past decade and allow now to study single molecules in vivo [1]. Processing of experimental data essentially relies on theoretical approaches to conformational transitions in biopolymers [2]. However, the models that are currently used, originate from the early 1960's and contain several unjustified assumptions, widely accepted at that time. Thus, the view on the conformational transitions in the polypeptides as a two-state process has very limited applicability because the all-or-none transition mechanism takes place only in short polypeptides with sizes comparable to the spatial correlation length; the original formulation of Zimm-Bragg model is phenomenological and does not allow for a microscopic model for water; the implicit consideration of the water-polypeptide interactions through the ansatz about the quadratic dependence of free energy difference on temperature can only be justified through the assumption of an ideal gas with a constant heat capacity. To get rid of these deficiencies, we augment the Hamiltonian formulation [3] of the Zimm-Bragg model [4] with the term describing the water-polypeptide interactions [5]. The analytical solution of the model results in a formula, ready to be fit to Circular Dichroism (CD) data for both heat and cold denaturation. On the example of several sets of experimental data we show, that our formula results in a significantly better fit, as compared to the existing approaches. Moreover, the application of our procedure allows to compare the strengths of inter- and intra-molecular H-bonds, an information, inaccessible before.
Found in: ključnih besedah
Summary of found: ... helix-coil transition, water-polypeptide interactions...
Keywords: helix-coil transition, water-polypeptide interactions
Published: 13.03.2019; Views: 373; Downloads: 0
.pdf Fulltext (78,48 KB)

Search done in 0 sec.
Back to top