Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 10
First pagePrevious page1Next pageLast page
1.
Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory
Mikhail Kuznetsov, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: Various hints for anisotropies in the distribution of arrival directions of ultra-high-energy cosmic rays (UHECRs) have been reported. Still, our poor knowledge about extragalactic and Galactic magnetic fields and about the UHECR mass composition makes it non-trivial to interpret such results in terms of possible models of UHECR sources. In this work, we apply the same analyses that have been performed on the Pierre Auger Observatory and the Telescope Array UHECR data to a variety of Monte Carlo simulations generated according to many different combinations of hypotheses about the sources, composition and magnetic deflections of UHECRs. We find that only some of these models can yield results similar to those obtained with the real data.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions
Published in RUNG: 23.01.2024; Views: 299; Downloads: 6
.pdf Full text (1,30 MB)
This document has many files! More...

2.
Update on the searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope Array
Lorenzo Caccianiga, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The origin of ultra-high-energy cosmic rays (UHECRs), particles from outer space with energies �≥1 EeV, is still unknown, though the near-isotropy of their arrival direction distribution excludes a dominant Galactic contribution, and interactions with background photons prevent them from travelling cosmologically large distances. This suggests that their sources must be searched for in nearby galaxy groups and clusters. Deflections by intergalactic and Galactic magnetic fields are expected to hinder such searches but not preclude them altogether. So far, the only anisotropy detected with statistical significance ≥ 5� is a modulation in right ascension in the data from the Pierre Auger Observatory at �≥8 EeV interpretable as a 7% dipole moment. Various hints for higher-energy, smaller-scale anisotropies have been reported. UHECR arrival direction data from both the Pierre Auger Observatory and the Telescope Array experiment have been searched for anisotropies by a working group with members from both collaborations; combining the two datasets requires a cross-calibration procedure due to the different systematic uncertainties on energy measurements but allows us to perform analyses that are less model-dependent than what can be done with partial sky coverage. We report a significant dipole pointing away from the Galactic Center and a ∼4.6� anisotropy found when comparing the directions of UHECRs with a catalog of starburst galaxies.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions
Published in RUNG: 23.01.2024; Views: 278; Downloads: 4
.pdf Full text (4,36 MB)
This document has many files! More...

3.
A study of analysis method for the identification of UHECR source type
F. Yoshida, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The autocorrelation analysis using the arrival direction of Ultra High Energy Cosmic Rays (UHECRs) has been previously reported by the Telescope Array (TA) experiment. It is expected that the autocorrelation function reflects the source distribution. We simulate the expected arrival direction distribution of the cosmic rays using the catalogs of candidate sources. We take into account random deflection in the magnetic fields, with the magnitude of deflection determined by the charge and energy of the cosmic rays, coherence length and magnitude of the extragalactic magnetic field (EGMF), and by distance to source. In addition, in order to compare with the results of TA experiment, we consider the TA exposure. We compare the autocorrelation of the arrival directions corresponding to different source catalogs with the isotropic distribution. We calculate the autocorrelation function for each type of source candidates using this procedure. We will discuss the ability of this method to identify the source type of UHECRs.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy, autocorrelation, source models, magnetic fields
Published in RUNG: 04.10.2023; Views: 724; Downloads: 6
.pdf Full text (2,71 MB)
This document has many files! More...

4.
UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SD
M. Kuznetsov, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set. We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E>10 EeV. At 10100 EeV --- pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum-Xmax fit at 2.7σ (2.0σ) for PT'11 (JF'12) regular GMF model.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, composition, anisotropy, magnetic fields, 2MRS
Published in RUNG: 04.10.2023; Views: 555; Downloads: 5
.pdf Full text (3,02 MB)
This document has many files! More...

5.
Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2021, published scientific conference contribution

Abstract: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to FR-1s). In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data.
Keywords: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos
Published in RUNG: 16.08.2021; Views: 1848; Downloads: 3
.pdf Full text (2,04 MB)

6.
Observational evidence in favor of scale-free evolution of sunspot groups
Alexander Shapoval, Jean-Louis Le Mouël, M. Shnirman, Vincent Courtillot, 2018, original scientific article

Keywords: sunspots, sun, magnetic fields, data analysis
Published in RUNG: 23.03.2021; Views: 1975; Downloads: 56
URL Link to full text
This document has many files! More...

7.
Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
H. Abdalla, H. Abe, Fabio Acero, A. Acharyya, R. Adam, Christopher Eckner, Samo Stanič, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, original scientific article

Abstract: The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.
Keywords: Cherenkov Telescope Array, active galactic nuclei, gamma-ray experiments, axions, extragalactic magnetic fields
Published in RUNG: 02.03.2021; Views: 2247; Downloads: 71
URL Link to full text
This document has many files! More...

8.
Evidence for a supergalactic structure of magnetic deflection multiplets of ultra-high-energy cosmic rays
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Evidence for a large-scale supergalactic cosmic-ray multiplet (arrival directions correlated with energy) structure is reported for ultra-high-energy cosmic-ray (UHECR) energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector and updated to 10 years. Previous energy–position correlation studies have made assumptions regarding magnetic field shapes and strength, and UHECR composition. Here the assumption tested is that, because the supergalactic plane is a fit to the average matter density of the local large-scale structure, UHECR sources and intervening extragalactic magnetic fields are correlated with this plane. This supergalactic deflection hypothesis is tested by the entire field-of-view (FOV) behavior of the strength of intermediate-scale energy–angle correlations. These multiplets are measured in spherical cap section bins (wedges) of the FOV to account for coherent and random magnetic fields. The structure found is consistent with supergalactic deflection, the previously published energy spectrum anisotropy results of the TA (the Hotspot and Coldspot), and toy-model simulations of a supergalactic magnetic sheet. The seven year data posttrial significance of this supergalactic structure of multiplets appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be 4.2σ. The 10 years of data posttrial significance is 4.1σ. Furthermore, the starburst galaxy M82 is shown to be a possible source of the TA Hotspot, and an estimate of the supergalactic magnetic field using UHECR measurements is presented.
Keywords: extragalactic magnetic fields, ultra-high-energy cosmic radiation, cosmic rays, high energy astrophysics, astrophysical magnetism, cosmic ray astronomy, cosmic ray sources
Published in RUNG: 05.02.2021; Views: 2417; Downloads: 126
URL Link to full text
This document has many files! More...

9.
Search for anisotropy of ultrahigh energy cosmic rays with the Telescope Array experiment
T. Abu-Zayyad, Jon Paul Lundquist, 2012, original scientific article

Abstract: We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E > 57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure (LSS) of the universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the universe (the LSS hypothesis), while the event set with E > 10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.
Keywords: acceleration of particles, astroparticle physics, cosmic rays, magnetic fields, methods: statistical, relativistic processes
Published in RUNG: 19.05.2020; Views: 2808; Downloads: 0
This document has many files! More...

10.
Search for energy dependent patterns in the arrival direction of cosmic rays at the Pierre Auger Observatory
Tobias Winchen, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: Energy-dependent patterns in the arrival directions of cosmic rays are expected from deflections in galactic and extragalactic magnetic fields. We report on searches for such patterns in the data of the surface detector of the Pierre Auger Observatory at energies above E = 5 EeV in regions within approximately 15◦ around events with energy E > 60 EeV. No significant patterns are found with this analysis which can be used to constrain parameters in propagation scenarios.
Keywords: ultra-high energy cosmic rays galactic and extragalactic magnetic fields magnetic deflection patterns Pierre Auger Observatory
Published in RUNG: 02.03.2016; Views: 5233; Downloads: 228
.pdf Full text (1019,52 KB)

Search done in 0.06 sec.
Back to top