Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach.
Enzo Ottaviani, Daniela Quaglino, Giulia Annovi, Federica Boraldi, Davide Malagoli, 2009, original scientific article

Abstract: Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.
Found in: ključnih besedah
Keywords: Autophagic cell death, Fat body, IDGF, IPLB-LdFB, Proteomics
Published: 23.08.2019; Views: 592; Downloads: 0
.pdf Fulltext (2,33 MB)

2.
Connective tissue and diseases: from morphology to proteomics towards the development of new therapeutic appproach
Daniela Quaglino, Federica Boraldi, Giulia Annovi, Deanna Guerra, Ivonne Pasquali Ronchetti, 2009, review article

Abstract: Connective tissue consists of cells separated by the extracellular matrix, whose composition and amount vary according to age, to functional requirements, and to the presence of pathologic conditions. Within this non-random macromolecular assembly, collagens, elastin, proteoglycans and structural glycoproteins are mutually interdependent and modifications of one component, by extrinsic (environmental) and/or intrinsic (systemic, genetic, age-related) factors, may have consequences on the tissue as a whole. Since decades, different microscopical techniques have been applied mainly for diagnostic purposes and for detailed descriptions of changes occurring in cells and in matrix components. More recently, in order to dissect the molecular complexity of the matrix network, to analyse the interactions between cells and matrix and to look for modulators of cell phenotype, histomorphologic investigations have been implemented with proteomic studies that allow to identify possible diagnostic markers, and to better understand patho-mechanisms enabling the design of novel therapeutic strategies. Therefore, the progressively expanding, although incomplete, knowledge on connective tissue biology, sheds new light on the pathogenesis of diseases affecting single molecules (i.e. collagenopathies, mucopolysaccharidoses, elastinopathies) and discloses the importance of matrix components as fundamental regulators of cell phenotype, in relation, for instance, to the aging process and/or to cancer development and progression. Few examples will be presented demonstrating the promises of proteomics as a technique leading to the discovery of new therapies and possibly to the development of individualized treatments for a better patient care.
Found in: ključnih besedah
Keywords: pathology, proteomics, fibrosis, rheumatology, cancer
Published: 23.08.2019; Views: 553; Downloads: 0
.pdf Fulltext (967,65 KB)

3.
Search done in 0 sec.
Back to top