Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal fromWastewater under Solar Light
Andraž Šuligoj, Jelena Pavlovič, Iztok Arčon, Nevenka Rajić, Nataša Novak Tušar, 2020, original scientific article

Abstract: Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3–15 wt. % of Sn were prepared by using a precipitation–deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification.
Keywords: SnO2, zeolite, SnO2-clinoptilolite composite, photocatalysis, solar light, methylene blue removal, wastewater treatment
Published in RUNG: 25.02.2020; Views: 2906; Downloads: 131
.pdf Full text (3,50 MB)

2.
Surface modified titanium dioxide using transition metals : nickel as a winning transition metal for solar light photocatalysis
Andraž Šuligoj, Iztok Arčon, Matjaž Mazaj, Goran Dražić, Denis Arčon, Pegie Cool, Urška Lavrenčič Štangar, Nataša Novak Tušar, 2018, original scientific article

Abstract: Titanium dioxide has been widely used as an antimicrobial agent, UV-filter and catalyst for pollution abatement. Herein, surface modifications with selected transition metals (Me) over colloidal TiO2 nanoparticles and immobilization with a colloidal SiO2 binder as composite films (MeTiO2/SiO2) on a glass carrier were used to enhance solar-light photoactivity. Colloidal TiO2 nanoparticles were modified by loading selected transition metals (Me ¼ Mn, Fe, Co, Ni, Cu, and Zn) in the form of chlorides on their surface. They were present primarily as oxo-nanoclusters and a portion as metal oxides. The structural characteristics of bare TiO2 were preserved up to an optimal metal loading of 0.5 wt%. We have shown in situ that metal-oxo-nanoclusters with a redox potential close to that of O2/O2 were able to function as co-catalysts on the TiO2 surface which was excited by solar-light irradiation. The materials were tested for photocatalytic activity by two opposite methods; one detecting O2 (reduction, Rz ink test) while the other detecting OH (oxidation, terephthalic acid test). It was shown that the enhancement of the solar-light activity of TiO2 by the deposition of transition metal oxo-nanoclusters on the surface depends strongly on the combination of the reduction potential of such species and appropriate band positions of their oxides. The latter prevented excessive self-recombination of the photogenerated charge carriers by the nanoclusters in Ni and Zn modification, which was probably the case in other metal modifications. Overall, only Ni modification had a positive effect on solar photoactivity in both oxidation and reduction reactions.
Keywords: surface modified TiO2, XANES, EXAFS, Nickel, solar light photocatalyst
Published in RUNG: 01.06.2018; Views: 3422; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top