Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
High-redshift supernova rates measured with the gravitational telescope A 1689
Tanja Petrushevska, R. Amanullah, Ariel Goobar, S. Fabbro, Joel Johansson, Tor Kjellsson, Chris Lidman, K. Paech, Johan Richard, H. Dahle, Raphael Ferretti, J.P. Kneib, M. Limousin, Jakob Nordin, V. Stanishev, 2016, original scientific article

Abstract: Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 < z < 1.703 and magnifications in the range ∆m = −0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high redshifts, z ∼ 3, albeit for a limited region of space. We present a study of the core-collapse supernova rates for 0.4 ≤ z < 2.9, and find good agreement with previous estimates and predictions from star formation history. During our survey, we also discovered two Type Ia supernovae in A 1689 cluster members, which allowed us to determine the cluster Ia rate to be 0.14+0.19 −0.09 ± 0.01 SNuB h 2 (SNuB ≡ 10−12 SNe L −1 ,B yr−1), where the error bars indicate 1σ confidence intervals, statistical and systematic, respectively. The cluster rate normalized by the stellar mass is 0.10+0.13 −0.06 ± 0.02 in SNuM h 2 (SNuM ≡ 10−12 SNe M−1 yr−1). Furthermore, we explore the optimal future survey for improving the core-collapse supernova rate measurements at z & 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions. Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe.
Found in: ključnih besedah
Summary of found: ... galaxies: star formation galaxies: clusters: individual: A 1689 techniques: photometric... ...supernovae: general gravitational lensing: strong galaxies: star formation galaxies: clusters:...
Keywords: supernovae: general – gravitational lensing: strong – galaxies: star formation – galaxies: clusters: individual: A 1689 – techniques: photometric
Published: 23.01.2018; Views: 2340; Downloads: 0
.pdf Fulltext (2,64 MB)

2.
Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4
Tanja Petrushevska, Rahman Amanullah, Mattia Bulla, Markus Kromer, Raphael Ferretti, Ariel Goobar, Semeli Papadogiannakis, 2017, original scientific article

Abstract: Context. The light from distant supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at −5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at λ ∼ 3500 Å, which is present only to a lesser extent in individual low- and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.
Found in: ključnih besedah
Summary of found: ...supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along... ...supernovae: individual: PS1-10afx gravitational lensing: strong supernovae: general...
Keywords: supernovae: individual: PS1-10afx – gravitational lensing: strong – supernovae: general
Published: 23.01.2018; Views: 2348; Downloads: 0
.pdf Fulltext (1,00 MB)

3.
Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope A370
Tanja Petrushevska, Ariel Goobar, D. J. Lagattuta, R. Amanullah, Laura Hangard, S. Fabbro, C. Lindman, K. Paech, J. Richard, J.P. Kneib, 2017, original scientific article

Abstract: Aims. Strong lensing by massive galaxy clusters can provide magnification of the flux and even multiple images of the galaxies that lie behind them. This phenomenon facilitates observations of high-redshift supernovae (SNe) that would otherwise remain undetected. Type Ia supernovae (SNe Ia) detections are of particular interest because of their standard brightness, since they can be used to improve either cluster lensing models or cosmological parameter measurements. Methods. We present a ground-based, near-infrared search for lensed SNe behind the galaxy cluster Abell 370. Our survey was based on 15 epochs of J-band observations with the HAWK-I instrument on the Very Large Telescope (VLT). We use Hubble Space Telescope (HST) photometry to infer the global properties of the multiply-imaged galaxies. Using a recently published lensing model of Abell 370, we also present the predicted magnifications and time delays between the images. Results. In our survey, we did not discover any live SNe from the 13 lensed galaxies with 47 multiple images behind Abell 370. This is consistent with the expectation of 0.09 ± 0.02 SNe calculated based on the measured star formation rate. We compare the expectations of discovering strongly lensed SNe in our survey and that performed with HST during the Hubble Frontier Fields (HFF) programme. We also show the expectations of search campaigns that can be conducted with future facilities, such as the James Webb Space Telescope (JWST) or the Wide-Field Infrared Survey Telescope (WFIRST). We show that the NIRCam instrument aboard the JWST will be sensitive to most SN multiple images in the strongly lensed galaxies and thus will be able to measure their time delays if observations are scheduled accordingly.
Found in: ključnih besedah
Summary of found: ...strong / supernovae: general / galaxies: clusters: individual: A 370...
Keywords: gravitational lensing: strong / supernovae: general / galaxies: clusters: individual: A 370
Published: 28.06.2018; Views: 2253; Downloads: 110
.pdf Fulltext (4,14 MB)

Search done in 0 sec.
Back to top