Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


31 - 40 / 61
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
31.
Hidden black carbon air pollution in hilly rural areas - a case study of Dinaric depression
Kristina Glojek, Asta Gregorič, Griša Močnik, Andrea Cuesta-Mosquera, A. Wiedensohler, Luka Drinovec, Matej Ogrin, 2020, izvirni znanstveni članek

Opis: Air pollution is not an exclusively urban problem as wood burning is a widespread practice in rural areas. As we lack information on the air quality situation in rural mountainous regions, our aim is to examine equivalent black carbon (eBC) pollution in a typical rural karst area in the settlement of Loški Potok (Slovenia). eBC mass concentrations were measured by Aethalometer (AE-33) at two sites in Retje karst depression. The rural village station was located at the bottom of the karst depression whereas the rural background station was positioned at the top of the hill. We showthe diurnal variation of equivalent black carbon mass concentrations for different seasons. In the populated karst depression, the major source of eBC pollution are households using wood as a heating fuel reaching the highest mass concentrations in winter. Diurnal pattern of eBC from biomass burning and traffic differ due to different source activity and it is influenced by typical formation of a cold air pool from late afternoon until late morning, restricting the dispersion of local emissions. The large difference in mass concentrations between the lowest part of the village (rural station) and the top of the hill (rural background station) indicates that in a vertically stratified and stable atmosphere local sources of black carbon have a major impact onair quality conditions in the area studied. Since in Alpine and Dinaric regions there are many similar inhabited areas, we can expect similar air quality conditions also in other rural hilly areas with limited self-cleaning air capacity.
Ključne besede: air pollution, black carbon, hidden geographies, diurnal variation, biomass burning, relief depressions, Loški Potok, Slovenia
Objavljeno v RUNG: 04.01.2021; Ogledov: 2276; Prenosov: 0
Gradivo ima več datotek! Več...

32.
Performance of microAethalometers: Real-world Field Intercomparisons from Multiple Mobile Measurement Campaigns in Different Atmospheric Environments
Honey Alas, Thomas Mueller, Kay Weinhold, Sascha Pfeifer, Kristina Glojek, Asta Gregorič, Griša Močnik, Luka Drinovec, Francesca Costabile, Martina Ristorini, A. Wiedensohler, 2020, izvirni znanstveni članek

Opis: Small aethalometers are frequently used to measure equivalent black carbon (eBC) mass concentrations in the context of personal exposure and air pollution mapping through mobile measurements (MM). The most widely used is the microAethalometer (AE51). Its performance in the laboratory and field is well documented, however, there is not sufficient data in the context of its performance in different environments. In this investigation, we present the characterization of the performance of the AE51 through field unit-to-unit intercomparisons (IC), and against a reference absorption photometer from three MM campaigns conducted in drastically different environments. Five IC parameters were considered: i) study area, ii) location of IC, iii) time of day, iv) duration of IC, and v) correction for the filter-loading effect. We can conclude that it is crucial where and how long the IC have been performed in terms of the correlation between the mobile and reference instruments. Better correlations (R2 > 0.8, slope = 0.8) are achieved for IC performed in rural, and background areas for more than 10 minutes. In locations with more homogenous atmosphere, the correction of the loading effect improved the correlation between the mobile and reference instruments. In addition, a newer microAethalometer model (MA200) was characterized in the field under extreme cold conditions and correlated against another MA200 (R2 > 0.8, slope ≈ 1.0), AE51(R2 > 0.9, slope ≈ 0.9), and a stationary Aethalometer (AE33) across all wavelengths (R2 > 0.8, slope ≈ 0.7). For MA200, the loading effect was more pronounced, especially at the lower wavelengths, hence the correction of the loading effect is essential to improve the correlation against the AE33. The MA200 and AE51 proved to be robust and dependable portable instruments for MM applications. Real-world quality assurance of these instruments should be performed through field IC against reference instruments with longer durations in areas of slowly changing eBC concentration.
Ključne besede: Portable instruments, Mobile monitoring, Black carbon, Instrument intercomparisons
Objavljeno v RUNG: 15.09.2020; Ogledov: 2563; Prenosov: 183
.pdf Celotno besedilo (3,54 MB)

33.
Determination of source specific black carbon and CO2 emission rates by means of 222Rn tracer
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Griša Močnik, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: black carbon emission, radon
Objavljeno v RUNG: 17.07.2019; Ogledov: 3248; Prenosov: 0
Gradivo ima več datotek! Več...

34.
Evaluation of VOC denuder efficiency and positive artefactdue to denuder breakthrough using TCA08
Asta Gregorič, Gašper Lavrič, Martin Rigler, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: VOC denuder, TCA08, sampling artefact
Objavljeno v RUNG: 17.07.2019; Ogledov: 3126; Prenosov: 0
Gradivo ima več datotek! Več...

35.
36.
37.
Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDAR
Longlong Wang, Samo Stanič, William Eichinger, Griša Močnik, Luka Drinovec, Asta Gregorič, 2019, izvirni znanstveni članek

Opis: Vipava valley in Slovenia is a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. Aerosol loading distributions and optical properties were investigated using a two-wavelength polarization Raman LiDAR, which provided extinction coefficient, backscatter coefficient, depolarization ratio, backscatter Ångström exponent and LiDAR ratio profiles. Two different representative meteorological situations were investigated to explore the possibility of identifying aerosol types present in the valley. In the first case, we investigated the effect of strong downslope (Bora) wind on aerosol structures and characteristics. In addition to observing Kelvin–Helmholtz instability above the valley, at the height of the adjacent mountain ridge, we found new evidence for Bora-induced processes which inject soil dust aerosols into the free troposphere up to twice the height of the planetary boundary layer (PBL). In the second case, we investigated aerosol properties and distributions in stable weather conditions. From the observed stratified vertical aerosol structure and specific optical properties of different layers we identified predominant aerosol types in these layers.
Ključne besede: aerosol structures, aerosol characterization, polarization Raman LiDAR, Vipava valley
Objavljeno v RUNG: 08.03.2019; Ogledov: 3808; Prenosov: 118
.pdf Celotno besedilo (3,11 MB)

38.
THE IMPACT OF FIREWORKS ON AIRBORNE PARTICLES
Dominik Nemec, Franci Novak, 2018, druge monografije in druga zaključena dela

Ključne besede: air pollution, fireworks, airborne particles
Objavljeno v RUNG: 09.01.2019; Ogledov: 3661; Prenosov: 161
.pdf Celotno besedilo (9,44 MB)

39.
Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study
Longlong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Griša Močnik, Luka Drinovec, Janja Vaupotič, Miloš Miler, Mateja Gosar, Asta Gregorič, 2019, izvirni znanstveni članek

Opis: Aerosol vertical profiles are valuable inputs for the evaluation of aerosol transport models, in order to improve the understanding of aerosol pollution ventilation processes which drive the dispersion of pollutants in mountainous regions. With the aim of providing high-accuracy vertical distributions of particle mass concentration for the study of aerosol dispersion in small-scale valleys, vertical profiles of aerosol mass concentration for aerosols from different sources (including Saharan dust and local biomass burning events) were investigated over the Vipava valley, Slovenia, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. The analysis was based on datasets taken between 1–30 April 2016. In-situ measurements of aerosol size, absorption, and mass concentration were combined with lidar remote sensing, where vertical profiles of aerosol concentration were retrieved. Aerosol samples were characterized by SEM-EDX, to obtain aerosol morphology and chemical composition. Two cases with expected dominant presence of different specific aerosol types (mineral dust and biomass-burning aerosols) show significantly different aerosol properties and distributions within the valley. In the mineral dust case, we observed a decrease of the elevated aerosol layer height and subsequent spreading of mineral dust within the valley, while in the biomass-burning case we observed the lifting of aerosols above the planetary boundary layer (PBL). All uncertainties of size and assumed optical properties, combined, amount to the total uncertainty of aerosol mass concentrations below 30% within the valley. We have also identified the most indicative in-situ parameters for identification of aerosol type.
Ključne besede: valley air pollution, aerosol vertical distributions, lidar remote sensing, in-situ measurements, aerosol identification
Objavljeno v RUNG: 09.01.2019; Ogledov: 4105; Prenosov: 113
.pdf Celotno besedilo (7,43 MB)

40.
Aerosol monitoring over Vipava valley using Raman polarization lidar
Longlong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Asta Gregorič, Griša Močnik, Luka Drinovec, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Vipava valley in southwest Slovenia is a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin in mountainous terrain. An investigation of aerosol properties throughout the troposphere in different atmospheric conditions was made possible by a deployment of a two-wavelength polarization Raman lidar system combining with in-situ measurements in the valley (in the town of Ajdovščina) from September 2017. Using its aerosol identification capabilities, which are based on particle depolarization ratio and lidar ratio measurements, it was possible to identify predominant aerosol types in the observed atmospheric structures, for example in different atmospheric layers in the case of stratified atmosphere. Primary anthropogenic aerosols within the valley were found to be mainly emitted from two sources: individual domestic heating systems, which mostly use biomass fuel, and from traffic. A considerable fraction of natural aerosols (for example mineral dust and sea salt), transported over large distances, were observed both above and entering into the planetary boundary layer. According to the properties of different aerosol types, backscatter contribution of each aerosol type was evaluated and the corresponding extinction contribution was derived from lidar observations. Statistical analysis of the presence of different aerosol types was performed on the entire available dataset from 2017 and 2018.
Ključne besede: lidar, aerosol type, Vipava valley
Objavljeno v RUNG: 03.12.2018; Ogledov: 4207; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh