Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Orbital-dependent electron dynamics in Fe-pnictide superconductors
A. Thamizhavel, Damjan Krizmancic, Giovanni De Ninno, Jurij Urbančič, Primož Rebernik Ribič, Barbara Ressel, Ganesh Adhikary, Kalobaran Maiti, Matija Stupar, 2018, izvirni znanstveni članek

Opis: We report on orbital-dependent quasiparticle dynamics in EuFe 2 As 2, a parent compound of Fe-based superconductors, and a way to experimentally identify this behavior using time-and angle-resolved photoelectron spectroscopy across the spin density wave transition. We observe two different relaxation timescales for photoexcited d x z/d y z and d x y electrons. While the itinerant d x z/d y z electrons relax faster through the electron-electron scattering channel, d x y electrons form a quasiequilibrium state with the lattice due to their localized character, and the state decays slowly. Our findings suggest that electron correlation in Fe pnictides is an important property, which should carefully be taken into account when describing the electronic properties of both parent and carrier-doped compounds, and therefore establish a strong connection with cuprates
Najdeno v: osebi
Ključne besede: photoelectron dynamics, Fe based superconductors
Objavljeno: 29.11.2018; Ogledov: 1925; Prenosov: 0
.pdf Polno besedilo (2,37 MB)

2.
Orbital selective dynamics in Fe-pnictides triggered by polarized pump pulse excitations
Kalobaran Maiti, A. Thamizhavel, Giovanni De Ninno, Jurij Urbančič, Barbara Ressel, Matija Stupar, Primož Rebernik Ribič, Tanusree Saha, Ganesh Adhikary, 2021, izvirni znanstveni članek

Opis: Quantum materials display exotic behaviours related to the interplay between temperature-driven phase transitions. Here, we study the electron dynamics in one such material, CaFe$_2$As$_2$, a parent Fe-based superconductor, employing time and angle-resolved photoemission spectroscopy. CaFe$_2$As$_2$ exhibits concomitant transition to spin density wave state and tetragonal to orthorhombic structure below 170 K. The Fermi surface of this material consists of three hole pockets ($\alpha$, $\beta$ and $\gamma$) around $\Gamma$-point and two electron pockets around $X$-point. The hole pockets have $d_{xy}$, $d_{yz}$ and $d_{zx}$ orbital symmetries. The $\beta$ band constituted by $d_{xz}$/$d_{yz}$ orbitals exhibit a gap across the magnetic phase transition. We discover that polarized pump pulses can induce excitations of electrons of a selected symmetry. More specifically, while $s$-polarized light (polarization vector perpendicular to the $xz$-plane) excites electrons corresponding to all the three hole bands, $p$-polarized light excites electrons essentially from ($\alpha$,$\beta$) bands which are responsible for magnetic order. Interestingly, within the magnetically ordered phase, the excitation due to the $p$-polarized pump pulses occur at a time scale of 50 fs, which is significantly faster than the excitation induced by $s$-polarized light ($\sim$ 200 fs). These results suggest that the relaxation of different ordered phases occurs at different time scales and this method can be used to achieve selective excitations to disentangle complexity in the study of quantum materials.
Najdeno v: osebi
Ključne besede: Electronic structure, Pnictides and chalcogenides, Time-resolved spectroscopy
Objavljeno: 13.10.2021; Ogledov: 243; Prenosov: 0
.pdf Polno besedilo (9,56 MB)

Iskanje izvedeno v 0 sek.
Na vrh