Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


61 - 70 / 93
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
61.
Operando XAS analysis of CuO/SiO2 and CuO/CeO2 catalysts
Albin Pintar, Maxim Zabilsky, Petar Djinović, Janvit Teržan, Iztok Arčon, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The possibilities of the operando XAS analysis of catalysts will be presented on two case studies of promising new catalytic materials: alkali doped nano-dispersed copper oxide clusters on ordered mesoporous SiO2, which is highly active and selective towards propylene epoxidation [1], and nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction [2]. Operando Cu K-edge and Ce L3-edge XANES and EXAFS analysis was performed during catalytic reactions under controlled reaction conditions in a tubular reactor filled with protective He atmosphere at 1 bar. The spectra were measured before the reaction at RT, then during heating, and during catalytic reaction at 400 °C under controlled atmosphere. Operando XANES analysis is used to monitor the changes in valence states and local symmetries of Cu and Ce cations in the catalysts. A partial reduction of Cu2+ to Cu+ and Cu0 and Ce4+ to Ce3+ species was detected during catalyst activation, and re-oxidation during catalytic reaction. Different dynamics of reaching a quasi-steady oxidation state were revealed as the tested catalysts approached the quasi-steady state after 300 min of reaction. Operando EXAFS spectra are used to precisely determine local structure of Cu and Ce cations, to identify structural characteristics and changes of Cu and Ce species during the catalytic reactions. In this way, the active site in the catalytic reactions can be identified and the mechanism of the reaction clarified. The results of operando XAS analyses are crucial to guide further material modification, to obtain more effective catalyst, and material which is more resistant to inhibiting effects that cause catalyst deactivation during catalytic reaction.
Najdeno v: osebi
Ključne besede: katalizatorji, Cu XANES, EXAFS
Objavljeno: 12.09.2018; Ogledov: 791; Prenosov: 0
.pdf Polno besedilo (62,04 KB)

62.
The effect of Zr loading on photocatalytic activity of Cu modified TiO [sub] 2
Urška Lavrenčič Štangar, Nataša Novak Tušar, Iztok Arčon, Mattia Fanetti, O. L. Pliekhov, Olena Pliekhova, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: osebi
Ključne besede: Cu Zr modified TiO2, EXAFS, XANES
Objavljeno: 12.09.2018; Ogledov: 667; Prenosov: 0
.pdf Polno besedilo (990,75 KB)

63.
Ionomic and metabolomic changes in mercury and selenium exposed plants and animals by X - ray and FTIR spectrometry
Katarina Vogel-Mikuš, Iztok Arčon, Jože Grdadolnik, Petra Gregorič, Anja Kavčič, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: osebi
Ključne besede: mercury, selenium, plants, animals
Objavljeno: 12.09.2018; Ogledov: 802; Prenosov: 0
.pdf Polno besedilo (62,45 KB)

64.
Fluorinated ether based electrolyte for high-energy lithium-sulfur batteries
Robert Dominko, Patrik Johansson, Giuliana Aquilanti, Iztok Arčon, Klemen Pirnat, Alen Vižintin, Steffen Jeschke, Sara Drvarič Talian, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: osebi
Ključne besede: Li-žveplive baterije, XANES, polisulfidi
Objavljeno: 12.09.2018; Ogledov: 591; Prenosov: 0
.pdf Polno besedilo (148,44 KB)

65.
Nickel coordination in hyperaccumulator plants studied by XANES and EXAFS
Jana Padežnik Gomilšek, Katarina Vogel-Mikuš, Alojz Kodre, Iztok Arčon, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: osebi
Ključne besede: nickel, hyperaccumulator plants
Objavljeno: 12.09.2018; Ogledov: 565; Prenosov: 0
.pdf Polno besedilo (64,89 KB)

66.
K-edge absorption spectra of gaseous hydrides
Iztok Arčon, Jana Padežnik Gomilšek, Robert Hauko, Alojz Kodre, Giuliana Aquilanti, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: X-ray absorption spectra in the energy region of absorption edges reveal fine details of the mechanism of inner-shell photoexcitation: in particular in spectra of free atoms or simple molecules, the simplest being gaseous hydrides [1-2]. In a collection of data from consecutive and homologous elements, analyzed by a common procedure, the reaction channels can be identified with better precision and reliability than in analysis of individual spectra. Absorption spectra of the hydrides of 3p elements (PH3, H2S in HCl) were measured at the XAFS beamline of the Elettra synchrotron in Trieste: a new type of adjustable absorption cell for measurement of noxious gases at room temperature and at low photon energies was developed for the purpose. For the analysis, data from an earlier experiment on 4p hydrides (GeH4, AsH3, H2Se, HBr), and published data of 2p hydrides (CH4, NH3, H2O, HF) [3-4] as well as SiH4 and the noble gases concluding the isoelectronic series (Ne, Ar, Kr) were adopted. The spectra are compared to respective calculated spectra, obtained by atomic HF86, GRASP codes and molecular DFT (Density functional theory) ORCA code [5]. Our analysis of the pre-edge structures showed that the energies and probabilities of singleelectron transitions into the lowermost orbitals with the molecular character were strongly affected by the symmetry of the molecule, essentially in the same way in 3p and 4p homologues, but not in 2p homologues with a stronger influence of the core charge. In transitions to higher orbitals with prevailing atomic character the influence of the molecular field is negligible. The fine structure immediately above the K edge stems from the coexcitation of valence electrons. These coexcitations can be explained as a two-step process: the inner-shell photoeffect followed by the shake-up of a valence electron predominantly to a free atomic orbital. The process is markedly different from coexcitations of more tightly bound electrons [3]. The results of relative shake-up probabilities can be compared to results of emission spectroscopies, the probabilities of double excitation to bound states show a correlation with the dissociation probability of the molecule.
Najdeno v: osebi
Ključne besede: večelektronske vzbuditve, hidridi, rentgenska absorpcijska spektroskopija
Objavljeno: 12.09.2018; Ogledov: 867; Prenosov: 0
.pdf Polno besedilo (88,18 KB)

67.
68.
In-situ XAS analysis of nanoshaped CuO/CeO2 catalysts used for N2O decomposition
Albin Pintar, Petar Djinović, Maxim Zabilsky, Iztok Arčon, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The goal of this research is to establish the working state and correlations between atomic structure and catalytic activity of nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction. The catalysts contained CuO nanoclusters dispersed over different CeO2 morphologies: nano-rods and nano-cubes. N2O is a side product of nitric and adipic acid production and a very potent greenhouse gas that is formed in amounts estimated at about 400 Mt/a of CO2 equivalent. Consequently, the development of robust, active and selective catalysts for N2O decomposition is of a great environmental and economical interest. CeO2-based materials promoted by CuO represent a new class of catalysts that exhibit considerable activity in N2O decomposition reaction between 300 and 500 °C [1-3], and are significantly cheaper and more efficient than Pt, Pd or Rh based catalysts. In order to maximize the efficiency of the catalyst, the active site in this reaction needs to be identified and the mechanism clarified. In-situ Cu K-edge and Ce L3-edge XANES and EXAFS analysis was done on a set of CuO/CeO2 catalysts with different ceria morphology (nano-cubes, nano-rods) and Cu loadings between 2 to 8 wt. %, during N2O decomposition reaction, under controlled reaction conditions at 400 °C. The XAS spectra were measured in-situ, in a tubular reactor, filled with protective He atmosphere at 1 bar, first at RT, then during heating, and at final temperature of 400 °C, during catalytic reaction, when the catalyst was exposed to a small amount (0.2 vol%) of N2O mixed with He. The Cu K-edge and Ce L3-edge XANES and EXAFS analysis reveals changes in valence and local structure of Cu and Ce in the CuO/CeO2 catalysts. In the initial state (in He at RT), copper is present in the form of CuO nanoparticles attached to the CeO2 surface. After heating in He to 400 °C, partial (10%) reduction of Ce [Ce(IV)→Ce(III)] is detected, significant part of Cu(II) is reduced to Cu(I) and Cu(0) species, and direct Cu-Cu bonds are formed. During catalytic N2O decomposition at 400°C, all Ce(III) is oxidized back to Ce(VI), and a major part of Cu is oxidized back to Cu(II), with about 5% of Cu(I) remaining in equilibrium state. Observed structural and valence changes of copper strongly depend on its loading and CeO2 morphology. With systematic In-situ XAS analysis of different nanoshaped CuO/CeO2 catalysts, we identified the structural characteristics and changes of Cu and Ce phases during catalytic N2O decomposition reaction, which could lead to identification of the active catalytic site during the reaction and further improve the performance of these promising catalytic materials.
Najdeno v: osebi
Ključne besede: EXAFS, CuO/CeO2 catalyst, N2O decomposition
Objavljeno: 12.09.2018; Ogledov: 845; Prenosov: 0
.pdf Polno besedilo (281,07 KB)

69.
K-edge absorption spectra of isoelectronic gaseous hydrides: a combination of atomic and molecular channels
Alojz Kodre, Jana Padežnik Gomilšek, Robert Hauko, Iztok Arčon, Giuliana Aquilanti, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The fine detail in the x-ray absorption spectra in the energy region of absorption edges provides the insight into the mechanism of inner-shell photoexcitation: in particular in spectra of free atoms or simple molecules, the simplest being gaseous hydrides [1-2]. Measured K edge absorption spectra of hydrides of 3p (PH3, H2S in HCl) and 4p (GeH4, AsH3, H2Se, HBr) elements, and published data of 2p hydrides (CH4, NH3, H2O, HF) as well as SiH4 [3-6] and the noble gases at the end of the isoelectronic series (Ne, Ar, Kr) are compared to the respective calculated spectra, obtained by atomic HF86, GRASP codes [7] and molecular DFT (Density functional theory) ORCA code [8]. For a clearer view of intraatomic processes, the weak and simple structural (XAFS) signal of the molecule is removed from the spectra. Among the spectral features below the continuum limit, those with the lowest energy belong to the transition of the core electron to the lowermost free orbitals with the molecular character. They are, as a rule, wider than the transitions to the higher orbitals with prevailing atomic character. The theoretical description with DFT code without specific adaptations is sufficient for a qualitative picture of the pre-edge structure. The fine structure immediately above the K edge stems from the coexcitation of valence electrons. We have proved that the coexcitations can be explained as a two-step process: the inner-shell photoeffect followed by the shake-up of a valence electron predominantly to a free atomic orbital. This process is markedly different from coexcitations of more tightly bound electrons [9]. In the collection of consecutive and homologous data, analyzed by a common procedure, the reaction channels can be identified with better precision and reliability than in analysis of individual spectra. Our analysis showed that the energies and probabilities of single-electron transitions into the molecular orbitals are strongly affected by the symmetry of the molecule, essentially in the same way in 3p and 4p homologues, but not in 2p homologues with a stronger influence of the core charge. In transitions to atomic orbitals the influence of the molecular field is negligible.
Najdeno v: osebi
Ključne besede: hidridi, rentgenska spektroskopija, XAFS
Objavljeno: 12.09.2018; Ogledov: 792; Prenosov: 0
.pdf Polno besedilo (63,16 KB)

70.
Sulfur based batteries studied by in-operando S K-edge RIXS and XAS spectroscopy
Matjaž Žitnik, Iztok Arčon, Alen Vižintin, Janez Bitenc, Ana Robba, Matjaž Kavčič, Klemen Bučar, Robert Dominko, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Sulfur based batteries are considered as very attractive energy storage devices. Sulfur is one of the most abundant elements in the earth, it is electrochemically active material which can accept up to two electrons per atom. In combination with alkali metals, sulfur forms electrochemical couples with much higher theoretical energy density compared to Li-ion batteries commonly available today. At the moment, the electrochemical couple with Li is most extensively studied. While the main principle of operation is known the relevant operation mechanism(s) is not completely clear. Even more promising is the electrochemical couple with Mg providing almost twofold higher volumetric energy density due to its ability to provide two electrons during oxidation. However, Mg-S batteries are still in the very early stage of research and development and the complex mechanism of sulfur conversion has been less extensively studied. In order to improve the understanding of sulfur electrochemical conversion and its interactions within electrode, we need to apply new experimental approaches capable to provide precise information about local environment of S in the cathode during battery operation. In our work, resonant inelastic X-ray scattering (RIXS) and XAS measurements at the sulfur K-edge performed in operando mode were used to study the lithium-polysulfide formation during the discharge process. Measurements were performed at ID26 beamline of the ESRF synchrotron using tender X-ray emission spectrometer [1]. Resonant excitation condition enhanced the sensitivity for the lithium−polysulfide detection. On the other hand, the sulfate signal from the electrolyte was heavily suppressed and the self-absorption effects minimized due to fixed excitation energy. This experimental methodology was used to provide quantitative analysis of sulfur compounds in the cathode of a Li−S battery cell during the discharge process [2]. The high-voltage plateau in the discharge curve was characterized by a rapid conversion of solid sulfur into liquid phase Li polysulfides reaching its maximum at the end of this plateau. At this point the starting point for the precipitation of the Li2S from the liquid polysulfide phase was observed. The same approach has been used also for the Mg-S battery revealing similar mechanism as in case of Li-S battery [3]. The electrochemical conversion of sulfur with magnesium proceeds through two well-defined plateaus, which correspond to the equilibrium between sulfur and Mg polysulfides (high-voltage plateau) and polysulfides and MgS (low-voltage plateau).
Najdeno v: osebi
Ključne besede: Mg-Sulphur batteries, XANES, RIXS
Objavljeno: 13.09.2018; Ogledov: 969; Prenosov: 0
.pdf Polno besedilo (123,32 KB)

Iskanje izvedeno v 0 sek.
Na vrh