Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A European aerosol phenomenology - 7 : high-time resolution chemical characteristics of submicron particulate matter across Europe
M. Bressi, F. Cavalli, Jean-Philippe Putaud, R. Fröhlich, J. -E. Petit, W. Aas, M. Äijälä, A. Alastuey, J. D. Allan, M. Aurela, Iasonas Stavroulas, Marta Via, 2021, izvirni znanstveni članek

Opis: Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites.
Ključne besede: aerosol, chemical composition, mass spectrometry, phenomenology
Objavljeno v RUNG: 10.05.2024; Ogledov: 128; Prenosov: 2
.pdf Celotno besedilo (9,75 MB)
Gradivo ima več datotek! Več...

2.
3.
Substantial brown carbon emissions from wintertime residential wood burning over France
Yunjiang Zhang, Alexandre Albinet, Jean-Eudes Petit, Véronique Jacob, Florie Chevrier, Gregory Gille, Sabrina Pontet, Eve Chrétien, Marta Dominik-Sègue, Gilles Levigoureux, Griša Močnik, Valérie Gros, Jean-Luc Jaffrezo, Olivier Favez, 2020, izvirni znanstveni članek

Opis: Brown carbon (BrC) is known to absorb light at subvisible wavelengths but its optical properties and sources are still poorly documented, leading to large uncertainties in climate studies. Here, we show its major wintertime contribution to total aerosol absorption at 370 nm (18–42%) at 9 different French sites. Moreover, an excellent correlation with levoglucosan (r2 = 0.9 and slope = 22.2 at 370 nm), suggesting important contribution of wood burning emissions to ambient BrC aerosols in France. At all sites, BrC peaks were mainly observed during late evening, linking to local intense residential wood burning during this time period. Furthermore, the geographic origin analysis also highlighted the high potential contribution of local and/or small-regional emissions to BrC. Focusing on the Paris region, twice higher BrC mass absorption efficiency value was obtained for less oxidized biomass burning organic aerosols (BBOA) compared to more oxidized BBOA (e.g., about 4.9 ± 0.2 vs. 2.0 ± 0.1 m2 g−1, respectively, at 370 nm). Finally, the BBOA direct radiative effect was found to be 40% higher when these two BBOA fractions are treated as light-absorbing species, compared to the non-absorbing BBOA scenario.
Ključne besede: Brown carbon, Multi sites, Residential wood burning, Mass absorption efficiency, France
Objavljeno v RUNG: 20.07.2020; Ogledov: 3126; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Iskanje izvedeno v 0.03 sek.
Na vrh