Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


111 - 120 / 139
Na začetekNa prejšnjo stran567891011121314Na naslednjo stranNa konec
111.
Large-Scale Distribution of Arrival Directions of Cosmic Rays Detected at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV
Olivier Deligny, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The large-scale distribution of arrival directions of high-energy cosmic rays is a key observable in attempts to understanding their origin. The dipole and quadrupole moments are of special interest in revealing potential anisotropies. An unambiguous measurement of these moments as well as of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV has been performed. Thanks to the full-sky coverage, the measurement of the dipole moment reported in this study does not rely on any assumption on the underlying flux of cosmic rays. As well, the resolution on the quadrupole and higher order moments is the best ever obtained. The resulting multipolar expansion of the flux of cosmic rays allows a series of anisotropy searches to be performed, and in particular to report on the first angular power spectrum of cosmic rays. This allows a comprehensive description of the angular distribution of cosmic rays above 10[sup]19 eV.
Ključne besede: Pierre Auger Observatory, Telescope Array, high-energy cosmic rays, large-scale anisotropies, angular power spectrum
Objavljeno v RUNG: 08.03.2016; Ogledov: 4401; Prenosov: 189
.pdf Celotno besedilo (462,61 KB)

112.
Report of the Working Group on the Composition of Ultra-High Energy Cosmic Rays
Michael Unger, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The atmospheric depth, Xmax, at which the particle number of an air shower reaches its maximum is a good indicator for the mass of the primary particle. We present a comparison of the energy evolution of the mean of Xmax as measured by the Telescope Array and c Collaborations. After accounting for the different resolutions, acceptances and analysis strategies of the two experiments, the two results are found to be in good agreement within systematic uncertainties.
Ključne besede: Pierre Auger Observatory, Telescope Array, Ultra-High Energy Cosmic Rays, elemental composition, extensive air showers, the atmospheric depth of the air shower maximum
Objavljeno v RUNG: 08.03.2016; Ogledov: 4584; Prenosov: 235
.pdf Celotno besedilo (329,86 KB)

113.
Search for a correlation between the UHECRs measured by the Pierre Auger Observatory and the Telescope Array and the neutrino candidate events from IceCube
Asen Christov, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube ‘high-energy starting events’ sample and the other with 16 high-energy ‘track events’. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values 3◦, 6◦ and 9◦ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point- source searches.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, Telescope Array, high-energy neutrinos, IceCube, correlation search
Objavljeno v RUNG: 08.03.2016; Ogledov: 4850; Prenosov: 192
.pdf Celotno besedilo (1,11 MB)

114.
Education, Outreach and Public Relations of the Pierre Auger Observatory
Charles Timmermans, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The scale and scope of the physics studied at the Pierre Auger Observatory continue to offer significant opportunities for original outreach work. Education, outreach and public relations of the Auger Collaboration are coordinated in a dedicated task whose goals are to encourage and support a wide range of efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. We focus on the impact of the Collaboration in Mendoza Province, Argentina and beyond. The Auger Visitor Center in Malargüe has hosted over 95,000 visitors since 2001, and a fifth Collaboration-sponsored science fair was held on the Observatory campus in November 2014. The Rural Schools Program, which is run by Observatory staff and which brings cosmic-ray science and infrastructure improvements to remote schools, continues to broaden its reach. Numerous online resources, video documentaries, and animations of extensive air showers have been created for wide public release. Increasingly, collaborators draw on these resources to develop Auger related displays and outreach events at their institutions and in public settings to disseminate the science and successes of the Observatory worldwide. We also highlight education and outreach activities associated with the planned upgrade of the Observatory’s detector systems and future physics goals.
Ključne besede: Pierre Auger Observatory, cosmic rays physics, education, outreach, public relations
Objavljeno v RUNG: 03.03.2016; Ogledov: 4491; Prenosov: 184
.pdf Celotno besedilo (4,12 MB)

115.
AugerNext: R&D studies at the Pierre Auger Observatory for a next generation ground-based ultra-high energy cosmic-ray experiment
Andreas Haungs, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The findings so far of the Pierre Auger Observatory and those of the Telescope Array define some requirements for a possible next generation global cosmic ray observatory: it needs to be considerably increased in size, it needs enhanced sensitivity to composition, and it has to cover the full sky. At the Pierre Auger Observatory, AugerNext aims to conduct some innovative initial research studies on a design of a sophisticated hybrid detector fulfilling these demands. Within a European supported ASPERA/APPEC (Astroparticle Physics European Consortium) project for the years 2011-2014, such R&D studies primarily focused on the following areas: i) consolidation of the detection of cosmic rays using MHz radio antennas; ii) proof- of-principle of cosmic ray microwave detection; iii) test of the large-scale application of new generation photo sensors; iv) generalization of data communication techniques; and v) development of new schemes for muon detection with surface arrays. The AugerNext Consortium consists of 14 principal investigators from 9 countries. This contribution summarizes some achievements of the R&D studies within the AugerNext project.
Ključne besede: ultra-high energy cosmic-ray experiments, Pierre Auger Observatory, Telescope Array, AugerNext research and development study
Objavljeno v RUNG: 03.03.2016; Ogledov: 4893; Prenosov: 198
.pdf Celotno besedilo (594,23 KB)

116.
Status and Prospects of the Auger Engineering Radio Array
Johannes Schulz, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The Auger Engineering Radio Array (AERA) is an extension of the Pierre Auger Observatory. It is used to detect radio emission from extensive air showers in the 30 - 80 MHz frequency band. A focus of interest is the dependence of the radio emission on shower parameters such as the energy and the atmospheric depth of the shower maximum. After three phases of deployment, AERA now consists of 153 autonomous radio stations with different spacings, covering an area of about 17 km2. The size, station spacings, and geographic location at the same site or near other Auger extensions, are all targeted at cosmic ray energies above 10[sup]17 eV. The array allows us to explore different technical schemes to measure the radio emission as well as to cross calibrate our measurements with the established baseline detectors of the Auger Observatory. We present the most recent technological developments and selected experimental results obtained with AERA.
Ključne besede: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), radio emission from extensive air showers, detector cross-calibration
Objavljeno v RUNG: 03.03.2016; Ogledov: 4529; Prenosov: 196
.pdf Celotno besedilo (2,79 MB)

117.
Automated procedures for the Fluorescence Detector calibration at the Pierre Auger Observatory
Gaetano Salina, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The quality of the physics results, derived from the analysis of the data collected at the Pierre Auger Observatory depends heavily on the calibration and monitoring of the components of the detectors. It is crucial to maintain a database containing complete information on the absolute calibration of all photomultipliers and their time evolution. The low rate of the physics events implies that the analysis will have to be made over a long period of operation. This requirement imposes a very organized and reliable data storage and data management strategy, in order to guarantee correct data preservation and high data quality. The Fluorescence Detector (FD) consists of 27 telescopes with about 12,000 phototubes which have to be calibrated periodically. A special absolute calibration system is used. It is based on a calibrated light source with a diffusive screen, uniformly illuminating photomultipliers of the camera. This absolute calibration is performed every few years, as its use is not compatible with the operation of the detector. To monitor the stability and the time behavior, another light source system operates every night of data taking. This relative calibration procedure yields more than 2×10[sup]4 raw files each year, about 1 TByte/year. In this paper we describe a new web-interfaced database architecture to manage, store, produce and analyse FD calibration data. It contains the configuration and operating parameters of the detectors at each instant and other relevant functional parameters that are needed for the analysis or to monitor possible instabilities, used for the early discovery of malfunctioning components. Based on over 10 years of operation, we present results on the long term performance of FD and its dependence on environmental variables. We also report on a check of the absolute calibration values by analysing the signals left by stars traversing the FD field of view.
Ključne besede: Pierre Auger Observatory, Fluorescence Detector, detector calibration and monitoring, automated calibration procedure
Objavljeno v RUNG: 03.03.2016; Ogledov: 4272; Prenosov: 202
.pdf Celotno besedilo (1,06 MB)

118.
Measurement of the water-Cherenkov detector response to inclined muons using an RPC hodoscope
Pedro Assis, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory operates a hybrid detector composed of a Fluorescence Detector and a Surface Detector array. Water-Cherenkov detectors (WCD) are the building blocks of the array and as such play a key role in the detection of secondary particles at the ground. A good knowledge of the detector response is of paramount importance to lower systematic uncertainties and thus to increase the capability of the experiment in determining the muon content of the extensive air showers with a higher precision. In this work we report on a detailed study of the detector response to single muons as a function of their trajectories in the WCD. A dedicated Resistive Plate Chambers (RPC) hodoscope was built and installed around one of the detectors. The hodoscope is formed by two stand-alone low gas flux segmented RPC detectors with the test water-Cherenkov detector placed in between. The segmentation of the RPC detectors is of the order of 10 cm. The hodoscope is used to trigger and select single muon events in different geometries. The signal recorded in the water-Cherenkov detector and performance estimators were studied as a function of the trajectories of the muons and compared with a dedicated simulation. An agreement at the percent level was found, showing that the simulation correctly describes the tank response.
Ključne besede: Pierre Auger Observatory, Water-Cherenkov detectors, detector calibration, inclined cosmic ray muons, Resistive Plate Chambers (RPC) hodoscope
Objavljeno v RUNG: 03.03.2016; Ogledov: 4654; Prenosov: 198
.pdf Celotno besedilo (1,27 MB)

119.
The Energy Content of Extensive Air Showers in the Radio Frequency Range of 30-80 MHz
Christian Glaser, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: At the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have developed a new method to measure the total amount of energy that is transferred from the primary cosmic ray into radio emission. We find that this radiation energy is an estimator of the cosmic ray energy. It scales quadratically with the cosmic ray energy, as expected for coherent emission. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicular to the geomagnetic field at the Auger site, in the frequency band of the detector from 30 to 80 MHz. These observations are compared to the data of the surface detector of the Observatory, which provide well-calibrated energies and arrival directions of the cosmic rays. We find energy resolutions of the radio reconstruction of 22% for the complete data set, and 17% for a high-quality subset containing only events with at least five stations with signal.
Ključne besede: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), extensive air showers, radio reconstruction: energy resolution
Objavljeno v RUNG: 03.03.2016; Ogledov: 4628; Prenosov: 210
.pdf Celotno besedilo (574,66 KB)

120.
The AMIGA Muon Counters of the Pierre Auger Observatory: Performance and Studies of the Lateral Distribution Function
Brian Wundheiler, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The AMIGA enhancement (Auger Muons and Infill for the Ground Array) of the Pierre Auger Observatory consists of a 23.5 km2 infill area where air shower particles are sampled by water- Cherenkov detectors at the surface and by 30 m2 scintillation counters buried 2.3 m underground. The Engineering Array of AMIGA, completed since February 2015, includes 37 scintillator modules (290 m2) in a hexagonal layout. In this work, the muon counting performance of the scintillation detectors is analysed over the first 20 months of operation. Parametrisations of the detector counting resolution and the lateral trigger probability are presented. Finally, preliminary results on the observed muon lateral distribution function (LDF) are discussed.
Ključne besede: Pierre Auger Observatory, AMIGA (Auger Muons and Infill for the Ground Array) muon counters, muon lateral distribution function (LDF)
Objavljeno v RUNG: 03.03.2016; Ogledov: 4096; Prenosov: 178
.pdf Celotno besedilo (499,33 KB)

Iskanje izvedeno v 0.07 sek.
Na vrh