Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Auger@TA : an Auger-like surface detector micro-array embedded within the Telescope Array Project
S. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-highenergy cosmic ray (UHECR) observatories in the world. One obstacle in pursuing full-sky UHECR physics is the apparent discrepancy in flux measured by the two experiments. This could be due to astrophysical differences as Auger and TA observe the Southern and Northern skies, respectively. However, the scintillation detectors used by TA have very different sensitivity to the various components of extensive air showers than the water-Cherenkov detectors (WCD) used by Auger. The discrepancy could also be due to systematic effects arising from the differing detector designs and reconstruction methods. The primary goal of the Auger@TA working group is to cross-calibrate the approaches of the two observatories using in-situ methods. This is achieved by placing a self-triggering micro-array, which consists of eight Auger surface detector stations, with both WCDs and AugerPrime scintillators, within the TA array. Seven of the WCDs use a 1-PMT prototype configuration and form a hexagon with the Auger spacing of 1.5 km. The eighth station uses a standard 3-PMT Auger WCD, placed with a TA station at the center of the hexagon to form a triplet for high-statistics, low-uncertainty, cross-calibration of instrumentation. Deployment of the micro-array took place between September 2022 and August 2023, with data-taking foreseen by the Fall of 2023. Details on the instrumentation and deployment of the micro-array, as well as its expected performance, trigger efficiencies, and event rate will be presented. First data from individual stations will also be shown.
Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Telescope Array, AugerPrime, scintillators, water-Cherenkov detectors
Objavljeno v RUNG: 23.01.2024; Ogledov: 345; Prenosov: 6
.pdf Celotno besedilo (2,50 MB)
Gradivo ima več datotek! Več...

2.
Measurement of the mass composition of ultra-high-energy cosmic rays at the Pierre Auger Observatory
Eric Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux and many surprises. In particular, studies aiming to investigate and leverage the mass composition of UHECRs have played an important role in empowering discovery. This contribution will present an overview of the analyses of primary mass composition carried out during the first phase of the Observatory. The overview includes analyses derived from measurements made by the surface, fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special attention will be given to recent advances and results to provide a complete picture of UHECR mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally, specific updates will be given to studies focusing on mass trends from surface detector rise-times, �max dependent anisotropies, and UHECR beam characterization using the correlation between �max and signal amplitudes at the ground.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Objavljeno v RUNG: 23.01.2024; Ogledov: 364; Prenosov: 4
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

3.
Indication of a mass-dependent anisotropy above 10^18.7 eV in the hybrid data of the Pierre Auger Observatory
E.W. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: We test the hypothesis of an anisotropy laying along the galactic plane which depends on the mass of primary cosmic-rays. The sensitivity to primary mass is provided by the depth of shower maximum, Xmax, from hybrid events measured at the Pierre Auger Observatory. The 14 years of available data are split into on- and off-plane regions using the galactic latitude of each event to form two distributions in Xmax, which are compared using the Anderson-Darling 2-samples test. A scan over a subset of the data is used to select an optimal threshold energy of 10^18.7 eV and a galactic latitude splitting at |b|=30∘, which are then set as a prescription for the remaining data. With these thresholds, the distribution of Xmax from the on-plane region is found to have a 9.1±1.6+2.1−2.2 g/cm2 shallower mean and a 5.9±2.1+3.5−2.5 g/cm2 narrower width than that of the off-plane region. These differences are as such to indicate that the mean mass of primary particles arriving from the on-plane region is greater than that of those coming from the off-plane region. Monte-Carlo studies yield a 4.4σ post-penalization statistical significance for the independent data. Including the scanned data results in a 4.9+1.4−1.5σ post-penalization statistical significance, where the uncertainties are of systematic origin. Accounting for systematic uncertainties leads to an indication for anisotropy in mass composition above 10^18.7 eV at a confidence level of 3.3σ. The anisotropy is observed independently at each of the four fluorescence telescope sites. Interpretations of possible causes of the observed effect are discussed.
Ključne besede: Pierre Auger Observatory, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, composition, anisotropy, Xmax, galactic plane
Objavljeno v RUNG: 03.10.2023; Ogledov: 645; Prenosov: 6
.pdf Celotno besedilo (1,33 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh