Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Aerosol light extinction coefficient closure : comparison of airborne in-situ measurements with LIDAR measurements during JATAC/CAVA-AW 2021/2022 campaigns
Marija Bervida, Jesús Yus-Díez, Luka Drinovec, Uroš Jagodič, Blaž Žibert, Matevž Lenarčič, Griša Močnik, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands resulted in a large in-situ and remote measurement dataset. Its main objective was the calibration and validation of the ESA satellite Aeolus ALADIN Lidar. The campaign also featured secondary scientific objectives related to climate change. Constraining remote sensing measurements with those provided by in-situ instrumentation is crucial for proper characterization and accurate description of the 3-D structure of the atmosphere.We present the results performed with an instrumented light aircraft (Advantic WT-10) set-up for in-situ aerosol measurements. Twenty-seven flights were conducted over the Atlantic Ocean at altitudes around and above 3000 m above sea level during intense dust transport events. Simultaneous measurements with PollyXT, and eVe ground-based lidars took place, determining the vertical profiles of aerosol optical properties, which were also used to plan the flights.The aerosol light extinction coefficient was obtained at three different wavelengths as a combination of the absorption coefficients determined using Continuous Light Absorption Photometers (CLAP) and the scattering coefficients measured with an Ecotech Aurora 4000 nephelometer, which also measured the backscatter fraction. The particle size distributions above 0.3 µm diameter were measured with two Grimm 11-D Optical Particle Size Spectrometers (OPSS). Moreover, CO2 concentration, temperature, aircraft GPS position and altitude, air and ground speed were also measured.We compare the in-situ aircraft measurements of the aerosol extinction coefficients with the AEOLUS lidar derived extinction coefficients, as well as with the ground-based eVe and PollyXT lidar extinction coefficients when measurements overlapped in space and time. The comparison was performed at the closest available wavelengths, with in-situ measurements inter/extrapolated to those of the lidar systems.In general we find an underestimation of the extinction coefficient obtained by lidars compared to the in-situ extinction coefficient. The slopes of regression lines of ground-based lidars, PollyXT and eVe, against the in-situ measurements are characterised by values ranging from 0.61 to 0.7 and R2 between 0.71 and 0.89. Comparison further suggests better agreement between Aeolus ALADIN lidar and the in-situ measurements. Relationship described by fitting the Aeolus to in-situ data is characterised by the slope value 0.76 and R2 of 0.8.The causes of better agreement of the in-situ measurements with the ALADIN lidar than with the surface based ones are being studied, with several reasons being considered: a) lower spatial and temporal resolution which homogenize the area of study in comparison with the very fine vertical variations of the aerosols, which can be detected with the surface-based measurements, impairing the comparison with highly vertically resolved ground-lidar measurements while not affecting averaged space-borne lidar; b) the effect of lower clouds/ Saharan air layers on the attenuation of the lidar signal.The presented results show the importance of the comparison of the remote with in-situ measurements for the support of the research on evolution, dynamics, and predictability of tropical weather systems and provide input into and verification of the climate models.
Ključne besede: LIDAR, Aeolus, ALADIN, in-situ measurements, aerosol absorption, aerosol extinction, airborne measurements
Objavljeno v RUNG: 18.03.2024; Ogledov: 172; Prenosov: 5
.pdf Celotno besedilo (291,41 KB)
Gradivo ima več datotek! Več...

2.
Aerosol dust absorption : measurements with a reference instrument (PTAAM-2[lambda]) and impact on the climate as measured in airborne JATAC/CAVA-AW 2021/2022 campaigns
Jesús Yus-Díez, Luka Drinovec, Marija Bervida, Uroš Jagodič, Blaž Žibert, Griša Močnik, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Aerosol absorption coefficient measurements classically feature a very large uncertainty, especially given the absence of a reference method. The most used approach using filter-photometers is by measuring the attenuation of light through a filter where aerosols are being deposited. This presents several artifacts, with cross-sensitivity to scattering being most important at high single scattering albedo with the error exceeding 100%. We present lab campaign results where we have resuspended dust samples from different mid-latitude desert regions and measured the dust absorption and scattering coefficients, their mass concentration and the particle size distribution. The absorption coefficients were measured with two types of filter photometers: a Continuous Light Absorption Photometers (CLAP) and a multi-wavelength Aethalometer (AE33). The  dual-wavelength photo-thermal interferometer (PTAAM-2λ) was employed as the reference. Scattering coefficients were measured with an Ecotech Aurora 4000 nephelometer. The mass concentration was obtained after the weighting of filters before and after the sampling, and the particle size distribution (PSD) was measured by means of optical particle counters (Grimm 11-D).Measurements of the scattering with the nephelometer and absorption with the PTAAM-2λ we obtained the filter photometer multiple scattering parameter and cross-sensitivity to scattering as a function of the different sample properties. Moreover, by determining the mass concentration and the absorption coefficients of the samples, we derived the mass absorption cross-sections of the different dust samples, which can be linked to their size distribution as well as to their mineralogical composition.The focus of the JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands was on the calibration/validation of the ESA Aeolus satellite ALADIN lidar, however, the campaign also featured secondary scientific climate-change objectives. As part of this campaign, a light aircraft was set-up for in-situ aerosol measurements. Several flights were conducted over the Atlantic Ocean up to and above 3000 m above sea level during intense dust transport events. The aircraft was instrumented to determine the absorption coefficients using a pair of Continuous Light Absorption Photometers (CLAPs) measuring in the fine and coarse fractions separately, with parallel measurements of size distributions in these size fractions using two Grimm 11-D Optical Particle Size Spectrometers (OPSS). In addition, we performed measurements of the total and diffuse solar irradiance with a DeltaT SPN1 pyranometer.The combination of the absorption and PSD with source identification techniques enabled the separation of the contributions to  absorption by dust and black carbon. The atmospheric heating rate of these two contributions was determined by adding the irradiance measurements. Therefore, the integration of the results from the Using laboratory resuspension experiments  to interpret the airborne measurements is of great relevance for the determination  of the radiative effect of the Saharan Aerosol Layer as measured over the tropical Atlantic ocean.
Ključne besede: black carbon, mineral dust, Saharan dust, atmospheric heating rate, climate change, airborne measurements
Objavljeno v RUNG: 18.03.2024; Ogledov: 164; Prenosov: 2
.pdf Celotno besedilo (291,71 KB)
Gradivo ima več datotek! Več...

3.
JATAC/CAVA-AW Aeolus Cal/Val airborne campaign dataset
Jesús Yus-Díez, Griša Močnik, Luka Drinovec, Marija Bervida, Blaž Žibert, Uroš Jagodič, Matevž Lenarčič, zaključena znanstvena zbirka raziskovalnih podatkov

Opis: Light aircraft (WT10 - experimental) with position and windspeed variables provided by onboard GPS, as well as additional meteorological sensors. The aircraft was mounted with a: a sunshine pyranometer type SPN1 (Delta-T Devices Ltd), a polar integrating nephelometer AURORA 4000 (Ecotech Pty Ltd), and had a dual sampling line aircraft for measurements at the fine and coarse fraction of the absorption by two Continuous Light Absorption Photometer (CLAPS, by Haze Instruments d.o.o.) and the particle size distribution by two optical particle counters (OPC, model 11D, GRIMM Technologies). The pyranometer provides measurements of the global, direct and diffuse irradiance for a radiation spectrum range between 400 and 2700nm with a 1s time resolution. The polar integrating nephelometer measures the scattering coefficients of particles at three wavelengths (450, 525 and 635 nm) and multiple angles (two selected for the campaign: 0, 90deg) with a 5s time resolution. The CLAP photometers measure the absorption coefficient by aerosol particles at three wavelengths (467, 529 and 653 nm) with a 1s time resolution. The OPC measurements provide the number and mass concentration of aerosol particles for 31 bins in the size range between 0.253 and 35.15 micrometers with a 6s time resolution. The 2021 and 2022 campaigns are found at: http://www.worldgreenflight.com/glwf.php#to-2021 http://www.worldgreenflight.com/glwf.php#to-2022-jatac
Ključne besede: Aeolus satellite, Saharan dust, aerosol, calibration, validation
Objavljeno v RUNG: 27.09.2023; Ogledov: 723; Prenosov: 6
.pdf Celotno besedilo (77,35 KB)
Gradivo ima več datotek! Več...

4.
A dual-wavelength photothermal aerosol absorption monitor : design, calibration and performance
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Griša Močnik, 2022, izvirni znanstveni članek

Opis: There exists a lack of aerosol absorption measurement techniques with low uncertainties and without artefacts. We have developed the two-wavelength Photothermal Aerosol Absorption Monitor (PTAAM-2λ), which measures the aerosol absorption coefficient at 532 and 1064 nm. Here we describe its design, calibration and mode of operation and evaluate its applicability, limits and uncertainties. The 532 nm channel was calibrated with ∼ 1 µmol mol−1 NO2, whereas the 1064 nm channel was calibrated using measured size distribution spectra of nigrosin particles and a Mie calculation. Since the aerosolized nigrosin used for calibration was dry, we determined the imaginary part of the refractive index of nigrosin from the absorbance measurements on solid thin film samples. The obtained refractive index differed considerably from the one determined using aqueous nigrosin solution. PTAAM-2λ has no scattering artefact and features very low uncertainties: 4 % and 6 % for the absorption coefficient at 532 and 1064 nm, respectively, and 9 % for the absorption Ångström exponent. The artefact-free nature of the measurement method allowed us to investigate the artefacts of filter photometers. Both the Aethalometer AE33 and CLAP suffer from cross-sensitivity to scattering – this scattering artefact is most pronounced for particles smaller than 70 nm. We observed a strong dependence of the filter multiple scattering parameter on the particle size in the 100–500 nm range. The results from the winter ambient campaign in Ljubljana showed similar multiple scattering parameter values for ambient aerosols and laboratory experiments. The spectral dependence of this parameter resulted in AE33 reporting the absorption Ångström exponent for different soot samples with values biased 0.23–0.35 higher than the PTAAM-2λ measurement. Photothermal interferometry is a promising method for reference aerosol absorption measurements.
Ključne besede: aerosol absorption, calibration, black carbon
Objavljeno v RUNG: 28.06.2022; Ogledov: 1133; Prenosov: 25
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

5.
Iskanje izvedeno v 0.03 sek.
Na vrh