Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Lidar measurements of Bora wind effects on aerosol loading
Maruška Mole, Longlong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Francisco Ocaña, Benedikt Strajnar, Primož Škraba, Marko Vučković, William Willis, 2017, izvirni znanstveni članek

Opis: The Vipava valley in Slovenia is well known for the appearance of strong, gusty North-East Bora winds, which occur as a result of air flows over an adjacent orographic barrier. There are three revealing wind directions within the valley which were found to give rise to specific types of atmospheric structures. These structures were investigated using a Mie scattering lidar operating at 1064 nm, which provided high temporal and spatial resolution backscatter data on aerosols, which were used as tracers for atmospheric flows. Wind properties were monitored at the bottom of the valley and at the rim of the barrier using two ultrasonic anemometers. Twelve time periods between February and April 2015 were selected when lidar data was available. The periods were classified according to the wind speed and direction and investigated in terms of appearance of atmospheric structures. In two periods with strong or moderate Bora, periodic atmospheric structures in the lidar data were observed at heights above the mountain barrier and are believed to be Kelvin–Helmholtz waves, induced by wind shear. No temporal correlation was found between these structures and wind gusts at the ground level. The influence of the wind on the height of the planetary boundary layer was studied as well. In periods with low wind speeds, the vertical evolution of the planetary boundary layer was found to be governed by solar radiation and clouds. In periods with strong or moderate Bora wind, convection within the planetary boundary layer was found to be much weaker due to strong turbulence close to the ground, which inhibited mixing through the entire layer.
Najdeno v: ključnih besedah
Ključne besede: Downslope wind Lidar observations Kelvin–Helmholtz waves Bora
Objavljeno: 06.01.2017; Ogledov: 1592; Prenosov: 0
.pdf Polno besedilo (3,02 MB)

2.
Study of the properties of air flow over orographic barrier
Maruška Mole, 2017, doktorska disertacija

Opis: Earth’s atmosphere is a complex system. All weather phenomena take place in its lowest layer, the troposphere, which is strongly influenced by human activities and the underlying surface orography. A good example of the influence the orography has on the behavior of air flows is the appearance of strong north-east downslope wind in Vipava valley, called Bora. Numerical models used to analyze flows in complex terrain need meteorological data both for setting the initial conditions and the verification of modeling results. Obtaining spatial distributions of meteorological observables can be challenging, especially in the case of strong winds, such as Bora, where traditional methods may be inadequate due to prohibitive wind speeds. In most cases, vertical properties of the atmosphere can be obtained using remote sensing techniques. Contrary to vertical profile measurements with traditional methods, remote sensing techniques do not require the measuring device to be placed within the flow and are therefore more appropriate for measurements in severe weather conditions such as strong winds. The aim of this thesis is a detailed analysis of wind and tropospheric structure properties in and above the Vipava valley in a variety of typical atmospheric conditions, including strong wind events. It employs a combination of high resolution wind and lidar data in addition to standard meteorological measurements. In Ajdovščina, there are four predominant wind directions, two of them directly connected to Bora. In the case of Bora, periodicity analysis of wind data from Ajdovščina yielded a range of possible wind gust periods between 1 and 7 minutes. The periods were not stable, with the periodogram less noisy for stable wind directions. Wavelike structures were found to be present in the troposphere in half of the investigated cases, regardless of the presence of Bora. In statically stable conditions, gravity waves propagated throughout the planetary boundary layer (PBL). In the case of Bora, the PBL experienced oscillations with periods between 1 and 2 minutes. A shear layer was present above the PBL, causing Kelvin-Helmholtz waves at its boundaries with periods ranging from 3 to 6 minutes. In some cases, periodic structures were observed above the shear layer as well, which were found to have longer periods than those within the PBL.
Najdeno v: ključnih besedah
Povzetek najdenega: ...north-east downslope wind in Vipava valley, called Bora. Numerical models used to analyze flows in...
Ključne besede: remote sensing, Vipava valley, wind properties, Bora, wind gusts, wind periodicity, tropospheric structures, Kelvin-Helmholtz waves
Objavljeno: 18.09.2017; Ogledov: 1868; Prenosov: 59
.pdf Polno besedilo (45,11 MB)

3.
Bora wind, Wind speed vertical profile, Logarithmic law, Power law
Klemen Bergant, Samo Stanič, Marija Bervida, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Bora is cold and gusty downslope wind with variable gust frequency and duration, appearing on the lee side of Dinaric Alps. Its flow characteristics are unique and theoretically still not fully described, especially for modeling purposes. We present an analysis of the wind speed vertical profiles at Razdrto, which lies in a gap between the Nanos and Javorniki plateau in southwest Slovenia and is strongly exposed to Bora. An analysis of the vertical wind speed profiles during Bora episodes is based on experimental wind data, provided by Helikopter energija, for six Bora events of different duration, appearing between April 2010 and May 2011. Average wind speed in 10-minute intervals was collected at four different heights (20, 31, 40 and 41.7 m above the ground)at the wind turbine site in Razdrto using cup anemometers. Wind direction data with same temporal resolution was obtained from a single wind vane placed at 40.9 m above the ground. Based on the collected data, the applicability of the empirical power-law and the logarithmic law profiles, commonly used for the description of neutrally stratified atmosphere, was investigated for the case of Bora. The parameters for the power-law and logarithmic law were obtained by fitting the wind speed data using linear regression method and are compared to standard values for that particular type of terrain. The quality of fits was very good with r2 above 0.9, indicating that both power-law and logarithmic law adequately describe mean horizontal Bora wind. The median value of the power-law coefficient was found to be 0.16±0.03, which is consistent with standard value for neutral atmosphere (0.143). The aerodynamic roughness varied from 0.003 m to 0.22 m with the median value of 0.09±0.07, which describes open level country terrain with some trees. The event in November 2010 with large roughness is expected to be due to specific wind direction and surface conditions.
Najdeno v: ključnih besedah
Ključne besede: Bora wind, Wind speed vertical profile, Logarithmic law, Power law
Objavljeno: 07.02.2019; Ogledov: 447; Prenosov: 4
Gradivo ima več datotek! Več...

4.
Near-Ground Profile of Bora Wind Speed at Razdrto, Slovenia
Klemen Bergant, Samo Stanič, Marija Bervida, Benedikt Strajnar, 2019, izvirni znanstveni članek

Opis: Southwest Slovenia is a region well-known for frequent episodes of strong and gusty Bora wind, which may damage structures, affect traffic, and poses threats to human safety in general. With the increased availability of computational power, the interest in high resolution modeling of Bora on local scales is growing. To model it adequately, the flow characteristics of Bora should be experimentally investigated and parameterized. This study presents the analysis of wind speed vertical profiles at Razdrto, Slovenia, a location strongly exposed to Bora during six Bora episodes of different duration, appearing between April 2010 and May 2011. The empirical power law and the logarithmic law for Bora wind, commonly used for the description of neutrally stratified atmosphere, were evaluated for 10-min averaged wind speed data measured at four different heights. Power law and logarithmic law wind speed profiles, which are commonly used in high resolution computational models, were found to approximate well the measured data. The obtained power law coefficient and logarithmic law parameters, which are for modeling purposes commonly taken to be constant for a specific site, were found to vary significantly between different Bora episodes, most notably due to different wind direction over complex terrain. To increase modeling precision, the effects of local topography on wind profile parameters needs to be experimentally assessed and implemented.
Najdeno v: ključnih besedah
Ključne besede: Bora wind, logarithmic law, power law, roughness length, wind profile
Objavljeno: 04.10.2019; Ogledov: 108; Prenosov: 3
.pdf Polno besedilo (5,90 MB)

Iskanje izvedeno v 0 sek.
Na vrh