Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


201 - 210 / 290
Na začetekNa prejšnjo stran17181920212223242526Na naslednjo stranNa konec
201.
Search for point sources of ultra-high-energy photons with the Telescope Array surface detector
R.U. Abbasi, Jon Paul Lundquist, 2020, izvirni znanstveni članek

Opis: The surface detector (SD) of the Telescope Array (TA) experiment allows us to detect indirectly photons with energies of the order of 10^18 eV and higher, and to separate photons from the cosmic ray background. In this paper, we present the results of a blind search for point sources of ultra-high-energy (UHE) photons in the Northern sky using the TA SD data. The photon-induced extensive air showers are separated from the hadron-induced extensive air shower background by means of a multivariate classifier based upon 16 parameters that characterize the air shower events. No significant evidence for the photon point sources is found. The upper limits are set on the flux of photons from each particular direction in the sky within the TA field of view, according to the experiment’s angular resolution for photons. The average 95 per cent confidence level upper-limits for the point-source flux of photons with energies greater than 10^18, 10^18.5, 10^19, 10^19.5 and 10^20 eV are 0.094, 0.029, 0.010, 0.0073 and 0.0058 km−2yr−1, respectively. For energies higher than 10^18.5 eV, the photon point-source limits are set for the first time. Numerical results for each given direction in each energy range are provided as a supplement to this paper.
Ključne besede: methods: data analysis, cosmic rays, gamma-rays: general
Objavljeno v RUNG: 29.04.2020; Ogledov: 2625; Prenosov: 0
Gradivo ima več datotek! Več...

202.
Air Shower Detection by Bistatic Radar
M. Abou Bakr Othman, Jon Paul Lundquist, 2011, objavljeni znanstveni prispevek na konferenci

Opis: Progress in the field of high‐energy cosmic rays is currently limited by the rarity of the most interesting rays striking the Earth. Indeed, the continuation of the field beyond the current generation of observatories may become financially and practically impossible if new ways are not found to achieve remote coverage over large portions of the Earth’s surface. We describe the development of an observatory based on such a new technique: the remote sensing via bistatic radar technology of cosmic ray induced extensive air showers. We build on pilot studies performed by MARIACHI which have demonstrated that air shower radar echoes are detectable, the opportunity afforded by the location of the Northern Hemisphere’s largest “conventional” cosmic ray observatory (The Telescope Array) in radio‐quiet western Utah, and the donation of analog television transmission equipment to this effort by a local television station.
Ključne besede: UHECR, Remote sensing, Television broadcasting, Cosmic rays, General procedures and instrumentation, Radar telescopes
Objavljeno v RUNG: 29.04.2020; Ogledov: 2660; Prenosov: 0
Gradivo ima več datotek! Več...

203.
TARA: Forward-scattered radar detection of UHECR at the telescope array
J. Belz, Jon Paul Lundquist, 2013, objavljeni znanstveni prispevek na konferenci

Opis: Increased event statistics will be required to definitively answer the question of the origin(s) of Ultra-High Energy Cosmic Rays (UHECR). Using current technologies however, achieving the necessary statistics may be financially and practically impossible. We describe the status and plans of the TARA project, an effort to detect Ultra-High-Energy Cosmic Rays by their forward scattered or “bistatic” radar signature. Bistatic radar holds promise as a new remote sensing technique for UHECR, without the duty cycle limitations of nitrogen fluorescence detectors. Such a technique could prove key in advancing the study of UHECR beyond the constraints of the current generation of cosmic ray observatories. TARA consists of a low-VHF television transmitter illuminating the air above the Telescope Array (TA), and a set of radio receivers on the far side of TA approximately 50 km distant from the transmitter. We have collected radar data since April 2011 using a 2 kW transmitter at 54.1 MHz. Recently, we received permission to increase our broadcast power to 40 kW and our effective radiated power (ERP) to 6 MW. On the receiver end, we are employing software-defined radio receivers and developing real-time trigger algorithms based on the expected air shower radar echo. In addition to presenting an overview of the project status and future plans, we will present the most recent results of searches for coincidences between radar echoes and Telescope Array air shower events.
Ključne besede: UHECR, cosmic rays, radar detection
Objavljeno v RUNG: 29.04.2020; Ogledov: 2678; Prenosov: 96
.pdf Celotno besedilo (623,59 KB)

204.
Study of UHECR Composition Using Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode
Jon Paul Lundquist, 2016, objavljeni znanstveni prispevek na konferenci

Opis: The seven year Telescope Array (TA) Middle Drum hybrid composition measurement shows agreement between Ultra-High Energy Cosmic Ray (UHECR) data and a light composition obtained with QGSJetII-03 or QGSJet-01c models. The data are incompatible with a pure iron composition, for all models examined, for energies log10(E/eV)>18.4. This is consistent with previous TA results. This analysis is presented using an updated version of the pattern recognition analysis (PRA) technique developed by TA.
Ključne besede: UHECR, cosmic rays, hybrid detection, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2489; Prenosov: 86
.pdf Celotno besedilo (150,19 KB)

205.
Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors
Jon Paul Lundquist, 2016, objavljeni znanstveni prispevek na konferenci

Opis: A simple cosmic ray track finding pattern recognition analysis (PRA) method for fluorescence detectors (FD) has been developed which significantly improves Xmax resolution and its dependence on energy. Events which have a clear rise and fall in the FD view contain information on Xmax that can be reliably reconstructed. Shower maximum must be extrapolated for events with Xmax outside the field of view of the detector, which creates a systematic dependence on the fitting function. The PRA method is a model and detector independent approach to removing these events, by fitting shower profiles to a set of triangles and applying limits on the allowable geometry.
Ključne besede: UHECR, cosmic rays, fluorescence detector, track finding, pattern recognition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2829; Prenosov: 107
.pdf Celotno besedilo (1,59 MB)

206.
The Nature and Origin of Ultra-high Energy Cosmic Ray Particles
P.L. Biermann, Jon Paul Lundquist, 2016, objavljeni znanstveni prispevek na konferenci (vabljeno predavanje)

Opis: We outline two concepts to explain Ultra High Energy Cosmic Rays (UHECRs), one based on radio galaxies and their relativistic jets and terminal hot spots, and one based on relativistic Super-Novae (SNe) or Gamma Ray Bursts (GRBs) in starburst galaxies, one matching the arrival direction data in the South (the radio galaxy Cen A) and one in the North (the starburst galaxy M82). The most likely identification of the origin of observed Gravitational Wave (GW) events is stellar binary black hole (BH) mergers in starburst galaxies such as M82 with the highest rate of star formation, so the highest far-infrared (FIR) luminosity, at the edge of the universe visible in 10 - 300 Hz GWs; at low heavy element abundance Zch the formation of stellar BHs extends to a larger mass range. A radio galaxy such as Cen A sequence of events involves first the merger of two Super-Massive Black Holes (SMBHs), with the associated ejection of low frequency GWs, then the formation of a new relativistic jet aiming into a new direction: ubiquitous neutrino emission follows accompanied by compact TeV photon emission, detectable more easily if the direction is towards Earth. The ejection of UHECRs is last. Both these sites are the perfect high energy physics laboratory: We have observed particles up to ZeV, neutrinos up to PeV, photons up to TeV, 30 - 300 Hz GW events, and hope to detect soon of order µHz to mHz GW events. Energy turnover in single low frequency GW events may be of order ∼1063 erg. How can we further test these concepts? First of all by associating individual UHECR events, or directional groups of events, with chemical composition in both the Telescope Array (TA) Coll. and the Auger Coll. data. Second by identifying more TeV to PeV neutrinos with recent SMBH mergers. Third by detecting the order < mHz GW events of SMBH binaries, and identifying the galaxies host to the stellar BH mergers and their GW events in the range up to 300 Hz. Fourth by finally detecting the formation of the first generation of SMBHs and their mergers, surely a spectacular discovery.
Ključne besede: UHECR, cosmic rays, anisotropy
Objavljeno v RUNG: 29.04.2020; Ogledov: 2396; Prenosov: 123
URL Povezava na datoteko
Gradivo ima več datotek! Več...

207.
Composition Measurements via Depth of Airshower Maximum at the Telescope Array
Jon Paul Lundquist, W. Hanlon, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Telescope Array (TA) was designed to answer important questions about the UHECR flux with energies above 10^17 eV such as spectrum, arrival direction, and mass composition. Because the UHECR flux is rapidly falling in this energy region, TA’s large exposure makes it one of the few experiments in the world that can adequately explore these issues. Composition is particularly difficult to measure because mass can not be measured directly due to the low flux. TA’s multiple methods of observing UHECR induced air showers will be explained, as well as how composition can be measured by these methods. Good agreement among the different measurement techniques is found leading to greater confidence in measuring UHECR mass composition and a way to test and understand TA systematic uncertainties.
Ključne besede: UHECR, cosmic rays, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2553; Prenosov: 103
.pdf Celotno besedilo (758,27 KB)

208.
A systematic uncertainty on the energy scale of the Telescope Array fluorescence detectors
T. Fujii, Jon Paul Lundquist, 2018, objavljeni znanstveni prispevek na konferenci

Opis: The Telescope Array experiment (TA) is the largest cosmic-ray detector in the northern hemi-sphere and consists of a surface detector (SD) array, plus three fluorescence detector (FD) stations overlooking the SD. The large field-of-view of an FD allows for reconstruction of the air-shower development in the atmosphere by imaging ultra-violet fluorescence light from atmospheric nitrogen excited by UHECRs. In estimation of the primary energy it is necessary to add to the calorimetric energy observed by the FD a “missing energy”, meaning the fraction of the primary energy that is not deposited by charged particles in the air. We report on the measurement of the missing energy from observed data collected by the TA FD and TA SD, independently of Monte Carlo simulations, using a technique pioneered by the Pierre Auger Observatory. We also address the effect on the energy scale attributed to fluorescence yield parameters.
Ključne besede: UHECR, cosmic rays, energy spectrum
Objavljeno v RUNG: 29.04.2020; Ogledov: 2598; Prenosov: 80
.pdf Celotno besedilo (4,74 MB)

209.
Telescope Array anisotropy summary
M. Fukushima, Jon Paul Lundquist, 2018, objavljeni znanstveni prispevek na konferenci

Opis: The Telescope Array has accumulated the largest UHECR data set in the Northern hemisphere. We make use of these data to search for large- and small-scale anisotropy of UHECR arrival directions. At small angular scales, we report an update on searches for clustering of events and on correlations with various classes of putative sources. At large angular scales, we revisit, with the new data and with new tests, the localized excess of events known as the TA “hot spot”. We review some other studies of the arrival directions and corresponding implications for the nature of UHECR sources.
Ključne besede: UHECR, cosmic rays, anisotropy
Objavljeno v RUNG: 29.04.2020; Ogledov: 2470; Prenosov: 87
.pdf Celotno besedilo (581,87 KB)

210.
Telescope Array Composition Summary
W. Hanlon, Jon Paul Lundquist, 2018, objavljeni znanstveni prispevek na konferenci

Opis: Ultra high energy cosmic ray (UHECR) chemical composition is important to resolving questions about the locations of UHECR sources and propagation models. Because composition can only be deduced by a process of statistical inference via the observation of air shower maxima (Xmax), UHECR observatories with large data collection rates must be employed to reduce statistical fluctuations. Telescope Array (TA), the largest cosmic ray observatory in the Northern Hemisphere, is designed to answer the question of UHECR composition, as well as other important features of cosmic ray flux, by combining a large array of over 500 scintillation surface detectors spread over 700 km^2, and three fluorescence detector stations overlooking the array. With eight years of data recorded, results of the measurements of UHECR composition will be presented. UHECR composition is traditionally measured by comparing the first and second moments of the distributions of shower maxima, which evolves with energy, between data and simulations. Reducing statistical fluctuations in the data helps to distinguish between different primary elements in the flux. In the current generation of cosmic ray observatories, UHECR data sets are large enough, and statistical uncertainties are now small enough, that we can safely distinguish between very light primary source flux (i.e., protons) and heavy flux (i.e., iron). Reducing systematic uncertainties is also important though, since large systematic shifts in air shower maxima will influence the interpretation of the data when compared to models. TA therefore employs different methods of measuring Xmax, including stereo air fluorescence, air fluorescence-surface counter hybrid, and a new technique using only surface counters. Updated results of TA hybrid composition among the different methods are presented using up to eight years of data. Agreement among all TA hybrid composition results are shown as well as detailed systematic errors which can be further explored by comparing composition results of the different measurement methods. Comparison of TA Xmax data are compared to different composition models as well.
Ključne besede: UHECR, Cosmic rays, composition
Objavljeno v RUNG: 29.04.2020; Ogledov: 2457; Prenosov: 83
.pdf Celotno besedilo (499,33 KB)

Iskanje izvedeno v 0.06 sek.
Na vrh