Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 23 / 23
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
21.
Indications of anisotropy at large angular scales in the arrival directions of cosmic rays detected at the Pierre Auger Observatory
Imen Al Samarai, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The large-scale distribution of arrival directions of high-energy cosmic rays carries major clues to understanding their origin. The Pierre Auger Collaboration have implemented different analyses to search for dipolar and quadrupolar anisotropies in different energy ranges spanning four orders of magnitude. A common phase ≈270◦ of the first harmonic modulation in right-ascension was found in adjacent energy intervals below 1 EeV, and another common phase ≈100◦ above 4 EeV. A constancy of phase measurements in ordered energy intervals originating from a genuine anisotropy is expected to appear with a smaller number of events than those needed to achieve significant amplitudes. This led us to design a prescribed test aimed at establishing whether this consistency in phases is real at 99% CL. The test required a total independent exposure of 21,000 km2 sr yr. We report on the status of this prescription. We also report the results of the search for a dipole anisotropy for cosmic rays with energies above 4 EeV using events with zenith angles between 60◦ and 80◦. Compared to previous analyses of events with zenith angles smaller than 60◦, this extension increases the size of the data set by 30%, and enlarges the fraction of exposed sky from 71% to 85%. The largest departure from isotropy is found in the energy range above 8 EeV, with an amplitude for the first harmonic in right ascension r1 = (4.4 ± 1.0) × 10[sup]−2, that has a chance probability P(≥ r1) = 6.4×10[sup]−5, reinforcing the hint previously reported with vertical events alone.
Ključne besede: high-energy cosmic rays large-scale distribution anisotropy studies Pierre Auger Observatory
Objavljeno v RUNG: 02.03.2016; Ogledov: 5247; Prenosov: 238
.pdf Celotno besedilo (862,90 KB)

22.
Biological role of Grapevine fanleaf virus (GFLV) in winegrowing region of Northern Primorska
Anastazija Jež Krebelj, 2015, doktorska disertacija

Opis: Grapevines (Vitis vinifera L.) represent one of the most important crops in the world in terms of both production and economic importance. Grapevines are exposed to many types of abiotic stresses (e.g., drought, flooding, low and high temperature, salinity) and biotic stresses (e.g., viruses, bacteria, phytoplasma, fungal disease) during their life-cycle. Therefore, grapevines elicit the appropriate defence mechanisms. In the first part of this study, we monitored the occurrence of Grapevine fanleaf virus (GFLV) infection, which causes progressive decline of infected grapevines and lowers their yield. Grapevines were also tested for the presence of other viruses important for grapevines: Arabis mosaic virus (ArMV), Grapevine leafroll associated virus (GLRaV)-1, -2, -3, -4, -9, Grapevine virus A (GVA), Grapevine fleck virus (GFkV) in this study; and by Cigoj (2015): Grapevine virus B (GVB), Tomato black ring virus (TBRV), Grapevine chrome mosaic virus (GCMV), Tomato ringspot virus (ToRSV), Raspberry ringspot virus (RpRSV), Strawberry latent ringspot virus (SLRSV), and Tobacco ringspot virus (TRSV). Using ELISA, the presence of the following grapevine viruses were detected: GFLV, (GFkV), (GVA), and Grapevine leafroll associated viruses- 1, -2, -3,. A wide range of GFLV symptoms caused by grapevine fanleaf disease in naturally infected vineyards were observed, including leaf, shoot and cluster malformations and leaf yellowing. GFLV is disseminated by its biological vector X. index, and through vegetative propagation of virus-infected material. The spread of GFLV in the vineyards was investigated here. We constructed a spatio-temporal study of the GFLV titres during the seasons and throughout the grapevine, for its distribution in different grapevine organs through the season. This study shows that young leaves have high virus titres through the whole vegetative period, while mature leaves, tendrils and flower/ berry clusters only have high titres at the beginning of the vegetative period. The seeds retain high virus titres after berry colouring. Phloem scrapings were shown to contain lower virus titres during the vegetative period, with an increase outside and at the beginning of the vegetative period. In flower/ berry clusters, mature leaves and tendrils, the GFLV titres decrease significantly over the vegetative period. Additionally, different GFLV titres were shown in five different cultivars, and different combinations of mixed infections with other grapevine viruses influenced the GFLV titre differently. Finally, correlation between the magnitude of symptom appearance and GFLV titres was analysed. Grapevines adapt to abiotic stresses and biotic stresses by the expression of a wide range of stress-responsive genes, which are thought to have key roles in stress tolerance and survival. SWP of the infected grapevines through the season was lower than SWP measured for healthy grapevines. For both seasons, there were significant differences in SWP measurements between healthy and GFLV-infected grapevines of ‘Schioppettino’ trained using the single Guyot training system. SWP and RHC of the GFLV-infected grapevines were reduced compared to the healthy controls. The water deficit triggered the production of ABA, which induced the expression of the stress-related gene RD22. Additionally, this study shows that the WRKY gene that is involved in the ABA signalling network is regulated by water deficit. Plant defence responses to water stress also included up-regulation of the F3H2 and LDOX genes, which are involved in anthocyanins synthesis. GFLV infection significant impacted upon the expression of genes involves in ABA biosynthesis, as NCED1 and NCED2, and upon two genes involved in the early stages of anthocyanins synthesis, as CHS2 and F3H1. We also showed that the combination of grapevine cultivar, training system, and environmental conditions impacts on gene expression
Ključne besede: Vitis vinifera L., grapevine, Grapevine fanleaf virus, GFLV, grapevine disease, virus titre, distribution, fluctuation, ELISA, qPCR, ABA, drought, water status, water deficit, SWP, RHC, anthocyanins, gene expression
Objavljeno v RUNG: 27.07.2015; Ogledov: 8422; Prenosov: 415
.pdf Celotno besedilo (4,19 MB)

23.
Iskanje izvedeno v 0.02 sek.
Na vrh