Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources
E. Santos, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory, located near Malargüe, Argentina, is the world’s largest cosmic-ray detector. It comprises a 3000 km^2 surface detector and 27 fluorescence telescopes, which measure the lateral and longitudinal distributions of the many millions of air-shower particles produced in the interactions initiated by a cosmic ray in the Earth’s atmosphere. The determination of the nature of cosmic rays and studies of the detector performances rely on extensive Monte Carlo simulations describing the physics processes occurring in extensive air showers and the detector responses. The aim of the Monte Carlo simulations task is to produce and provide the Auger Collaboration with reference libraries used in a wide variety of analyses. All multipurpose detector simulations are currently produced in local clusters using Slurm and HTCondor. The bulk of the shower simulations are produced on the grid, via the Virtual Organization auger, using the DIRAC middleware. The job submission is made via python scripts using the DIRAC-API. The Auger site is undergoing a major upgrade, which includes the installation of new types of detectors, demanding increased simulation resources. The novel detection of the radio component of extensive air showers is the most challenging endeavor, requiring dedicated shower simulations with very long computation times, not optimized for the grid production. For data redundancy, the simulations are stored on the Lyon server and the grid Disk Pool Manager and are accessible to the Auger members via iRODS and DIRAC, respectively. The CERN VMFile System is used for software distribution where, soon, the Auger Offline software will also be made available.
Ključne besede: Pierre Auger Observatory, indirect detection, fluorescence detection, surface detection, radio detection, ultra-high energy, cosmic rays, Monte Carlo simulation, computing resources, compute clusters, high capacity storage
Objavljeno v RUNG: 04.10.2023; Ogledov: 582; Prenosov: 7
.pdf Celotno besedilo (1,54 MB)
Gradivo ima več datotek! Več...

2.
Efficiency of the grid energy storage technology based on iron-chloride material cycle
Uroš Luin, doktorska disertacija

Opis: Future high-capacity energy storage technologies are crucial for a highly renewable energy mix, and their mass deployment must rely on cheap and abundant materials, such as iron chloride. The iron chloride electrochemical cycle (ICEC), suitable for long-term grid energy storage using a redox potential change of Fe2+/Fe, involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial maximizing the energy efficiency of the electrolysis process. The thesis presents a study of the influence of electrolysis parameters on energy efficiency, performed in an industrial-type electrolyzer system. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency as a function of current density. The contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ±3 % was achieved using 2.5 mol dm-3 FeCl2 solution at 70 °C and a current density of 0.1 kA m-2. In terms of the energy input per Fe mass, this means 1.88 Wh g-1. The limiting energy input per mass of the Fe-deposit, calculated by extrapolating experimental results toward Eocell potential, was found to be 1.76 Wh g-1. For optimal long-duration electrolysis efficiency and performance, the optimal catholyte concentration range is 1-2 mol dm-3 FeCl2. We performed in situ X-ray absorption spectroscopy experimental studies to validate theoretical conclusions from literature related to the population and structure of Fe-species in the FeCl2 (aq) solution at different concentrations (1 - 4 mol dm-3) and temperatures (25 - 80 °C). This revealed that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five H2O at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical H2O is substituted by a Cl ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing state-of-the-art conductivity models. An additional steric impediment of the electrolytic cell is caused by the predominant neutral species present in the catholyte solution at high concentration. This correlates with poor electrolysis performance at a very high catholyte concentration (4 mol dm-3 FeCl2), especially at high current densities (> 1 kA m-2). The neutral Fe[Cl2(H2O)4]0 complex negatively affects the anion exchange membrane ion (Cl-) transfer and lowers the concentration of electroactive species (Fe[Cl(H2O)5]+) at the cathode surface. The kinetics of hydrogen evolution from the reaction between Fe powder and HCl acid was studied under the first-order reaction condition. The activation energy was determined to be 55.3 kJ mol-1.
Ključne besede: ICEC, Power-to-Solid, energy storage, hydrogen, ferrous chloride, electrolysis, Fe deposition, efficiency, XAS, structure and population, ionic species, ion association, conductivity
Objavljeno v RUNG: 18.04.2023; Ogledov: 1259; Prenosov: 24  (1 glas)
.pdf Celotno besedilo (4,34 MB)

3.
Metal hydroxides for energy conversion and energy storage
Andraž Mavrič, predavanje na tuji univerzi

Opis: Electrocatalysts, electrochromic devices, and pseudo-capacitors based on transition metal (oxy)hydroxides depend on the reversibility of the reduction-oxidation process of metal cations. Rapid switching between different redox states is often involved, particularly in electrocatalysis where redox metal sites act as active centers for electron transfer to the reactant. To ensure long-term durability, the reversibility of the redox metal sites should be robust. Nickel hydroxide is a model catalyst for the oxygen evolution reaction (OER) and the basic representative of the layered double hydroxides. It is frequently combined with other transition metals (e.g. Fe, Co, Mn), forming some of the most active OER electrocatalysts in alkaline media. [1] I will present the use of in-situ spectroscopy to track the reversibility of redox states of the Ni(OH)2 during its lifetime. During the operation at 200 mA cm-2 in 1 M KOH electrolyte, the catalytic activity of Ni(OH)2 gradually degrades until lastly, the catalyst breaks down. During the catalyst lifetime, the reduction-oxidation reversibility of the Ni2+/3+ redox couple is lost and the catalyst converts into an inactive phase. The reversibility of the redox couple is monitored by the in-situ UV/Vis spectroscopy. During the catalyst lifetime, the reversibility of the redox peak is lost. The activity collapse is attributed to the structural amorphization/disordering of the layered Ni(OH)2 catalyst, as confirmed by TEM investigations and in-situ Raman spectroscopy. [2] Similarly, the redox reversibility of metal sites is also important for long cycle life in supercapacitors, based on the pseudo-capacitance mechanism. Contrary to catalysts, for supercapacitors, the water oxidation needs to be suppressed to increase the working voltage range. I will discuss the mechanisms for the deactivation of transition metal hydroxides to serve as capacitors and approaches to increase power density. Finally, I will discuss the use of mixed metal hydroxides to serve as precursors for a copper oxide-based catalytic system for CO2 hydrogenation to methanol. Thermal decomposition of hydrotalcite-based hydroxide precursor is followed by in-situ x-ray diffraction. The conditions to prepare disordered oxide in contact with catalytical active Cu metal are identified and the catalytic performance of catalysts with crystalline and disordered oxide phases are compared. [1] A. Mavrič, C. Cui, (2021), Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides, ACS Appl. Energy Mater., 4, 12032-12055. [2] A. Mavrič, M. Fanetti, Y. Lin, M. Valant, C. Cui, (2020), Spectroelectrochemical Tracking of Nickel Hydroxide Reveals Its Irreversible Redox States upon Operation at High Current Density, ACS Catal., 10, 9451-9457.
Ključne besede: electrochemistry, energy storage, CO2 hydrogenation, methnaol
Objavljeno v RUNG: 13.10.2022; Ogledov: 1096; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Correlation between FeCl2 electrolyte conductivity and electrolysis efficiency
Uroš Luin, Matjaž Valant, Iztok Arčon, 2022, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations. To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65 beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2 concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models [3]. [1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021. [2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp. 929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y. [3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022, doi: 10.3390/molecules27030642.
Ključne besede: Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical conductivity, electrolyte complex ionic species structure and population
Objavljeno v RUNG: 26.09.2022; Ogledov: 1399; Prenosov: (1 glas)
Gradivo ima več datotek! Več...

5.
6.
7.
In-situ Fe K-edge XAS analysis of ionic species in the highly-concentrated FeCl2 aqueous solutions for Power-to-Solid energy storage technology
Uroš Luin, Iztok Arčon, Matjaž Valant, prispevek na konferenci brez natisa

Ključne besede: In situ Fe K-edge XAS, highly-concentrated FeCl2 aqueous solutions, local structure, coordination number, Power-to-Solid, energy storage technology
Objavljeno v RUNG: 28.01.2021; Ogledov: 2650; Prenosov: 66  (1 glas)
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

8.
Electrolysis of Highly Concentrated FeCl2 Solution for Energy Storage in Solid Matter
Uroš Luin, 2020, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: Energy storage, FeCl2(aq) electrolysis
Objavljeno v RUNG: 11.12.2020; Ogledov: 2373; Prenosov: (1 glas)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh