Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 46
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
1.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 511; Prenosov: 3
.pdf Celotno besedilo (27,92 MB)
Gradivo ima več datotek! Več...

2.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 672; Prenosov: 1
.pdf Celotno besedilo (1,50 MB)
Gradivo ima več datotek! Več...

3.
Cherenkov Telescope Array Science : a multi-wavelength and multi-messenger perspective
Ulisses Barres de Almeida, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) will be the major global observatory for VHE gamma-ray astronomy over the next decade and beyond. It will be an explorer of the extreme universe, with a broad scientific potential: from understanding the role of relativistic cosmic particles, to the search for dark matter. Covering photon energies from 20 GeV to 300 TeV, and with an angular resolution unique in the field, of about 1 arc min, CTA will improve on all aspects of the performance with respect to current instruments, surveying the high energy sky hundreds of times faster than previous TeV telescopes, and with a much deeper view. The very large collection area of CTA makes it an important probe of transient phenomena. The first CTA telescope has just been inaugurated in the Canary Islands, Spain, and as more telescopes are added in the coming years, scientific operation will start. It is evident that CTA will have important synergies with many of the new generation astronomical and astroparticle observatories. In this talk we will review the CTA science case from the point of view of its synergies with other instruments and facilities, highlighting the CTA needs in terms of external data, as well as the opportunities and strategies for cooperation to achieve the basic CTA science goals.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA performances, transient VHE sources, CTA science
Objavljeno v RUNG: 04.12.2023; Ogledov: 606; Prenosov: 4
.pdf Celotno besedilo (1,16 MB)
Gradivo ima več datotek! Več...

4.
The Cherenkov Telescope Array. Science Goals and Current Status
Rene A. Ong, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci (vabljeno predavanje)

Opis: The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA), cosmic particle acceleration, astrophysics of extreme environments, physics beyond the Standard Model
Objavljeno v RUNG: 11.10.2023; Ogledov: 564; Prenosov: 7
.pdf Celotno besedilo (3,28 MB)
Gradivo ima več datotek! Več...

5.
Sensitivity to keV-MeV dark matter from cosmic-ray scattering with current and the upcoming ground-based arrays CTA and SWGO
Igor Reis, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci

Opis: A wealth of astrophysical and cosmological observational evidence shows that the matter content of the universe is made of about 85% of non-baryonic dark matter. Huge experimental efforts have been deployed to look for the direct detection of dark matter via their scattering on target nucleons, their production in colliders, and their indirect detection via their annihilation products. Inelastic scattering of high-energy cosmic rays off dark matter particles populating the Milky Way halo would produce secondary gamma rays in the final state from the decay of the neutral pions produced in such interactions, providing a new avenue to probe dark matter properties. We compute here the sensitivity for H.E.S.S.-like observatory, a current-generation ground-based Cherenkov telescopes, to the expected gamma-ray flux from collisions of Galactic cosmic rays and dark matter in the center of the Milky Way. We also derive sensitivity prospects for the upcoming Cherenkov Telescope Array (CTA) and Southern Wide-field Gamma-ray Observatory (SWGO). The expected sensitivity allows us to probe a poorly-constrained range of dark matter masses so far, ranging from keV to sub-GeV, and provide complementary constraints on the dark matter-proton scattering cross section traditionally probed by deep underground direct dark matter experiments.
Ključne besede: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Objavljeno v RUNG: 26.09.2023; Ogledov: 570; Prenosov: 6
.pdf Celotno besedilo (713,85 KB)
Gradivo ima več datotek! Več...

6.
Detecting and characterizing pulsar halos with the Cherenkov Telescope Array Observatory
Christopher Eckner, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The recently identified source class of pulsar halos may be populated and bright enough at TeV energies to constitute a large fraction of the sources that will be observed with the Cherenkov Telescope Array (CTA), especially in the context of the planned Galactic Plane Survey (GPS). In this study, we examine the prospects offered by CTA for the detection and characterization of such objects. CTA will cover energies from 20 GeV to 300 TeV, bridging the ranges already probed with the Fermi Large Area Telescope and High Altitude Water Cherenkov Observatory, and will also have a better angular resolution than the latter instruments, thus providing a complementary look at the phenomenon. From simple models for individual pulsar halos and their population in the Milky Way, we examine under which conditions such sources can be detected and studied from the GPS observations. In the framework of a full spatial-spectral likelihood analysis, using the most recent estimates for the instrument response function and prototypes for the science tools, we derive the spectral and morphological sensitivity of the CTA GPS to the specific intensity distribution of pulsar halos. From these, we quantify the physical parameters for which pulsar halos can be detected, identified, and characterized, and what fraction of the Galactic population could be accessible. We also discuss the effect of interstellar emission and data analysis systematics on these prospects.
Ključne besede: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Objavljeno v RUNG: 26.09.2023; Ogledov: 565; Prenosov: 7
.pdf Celotno besedilo (2,20 MB)
Gradivo ima več datotek! Več...

7.
Performance update of an event-type based analysis for the Cherenkov Telescope Array
J. Bernete, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. The traditional approach to data analysis in this field is to apply quality cuts, optimized using Monte Carlo simulations, on the data acquired to maximize sensitivity. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs) to physically interpret the results. However, an alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. This approach divides events into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. In previous works we demonstrated that event types, classified using Machine Learning methods according to their expected angular reconstruction quality, have the potential to significantly improve the CTA angular and energy resolution of a point-like source analysis. Now, we validated the production of event-type wise full-enclosure IRFs, ready to be used with science tools (such as Gammapy and ctools). We will report on the impact of using such an event-type classification on CTA high-level performance, compared to the traditional procedure.
Ključne besede: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Objavljeno v RUNG: 26.09.2023; Ogledov: 569; Prenosov: 6
.pdf Celotno besedilo (1,08 MB)
Gradivo ima več datotek! Več...

8.
ctapipe - prototype open event reconstruction pipeline for the Cherenkov Telescope Array
Maximilian Linhoff, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array Observatory (CTAO) is the next-generation ground-based gamma-ray observatory currently under construction. It will improve over the current genera-tion of imaging atmospheric Cherenkov telescopes (IACTs) by a factor of five to ten in sensitivity and it will be able to observe the whole sky from a combination of two sites: a northern site in La Palma, Spain, and a southern one in Paranal, Chile. CTAO will also be the first open ground-based gamma-ray observatory. Accordingly, the CTAO data processing pipeline is developed as open-source software and ctapipe will be a core package therein. The event reconstruction pipeline accepts raw data of the telescopes and processes it to produce suitable input for the higher-level science tools. Its primary tasks include reconstructing the physical properties of each recorded air shower and providing the corresponding instrument response functions. ctapipe is a python framework providing algorithms and command-line tools to facilitate raw data calibration, image extraction, image parametrization and event reconstruction. Its current main focus is the analysis of simulated data but it has also been successfully applied for the analysis of data obtained with the CTA prototype telescopes, and first science results have now been obtained by the LST-1 collaboration using ctapipe. A plugin system also allows the processing of non-CTA data. Recent updates, including event reconstruction using machine learning and a new plugin system as well as the roadmap towards a 1.0 release will be presented.
Ključne besede: Cherenkov Telescope Array Observatory, CTAO, ground-based gamma-ray observatory, ctapipe
Objavljeno v RUNG: 26.09.2023; Ogledov: 547; Prenosov: 4
.pdf Celotno besedilo (1,18 MB)
Gradivo ima več datotek! Več...

9.
Interpolation of Instrument Response Functions for the Cherenkov Telescope Array in the context of pyirf
R. M. Dominik, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high-energy gamma-ray observatory, constituted by tens of Imaging Atmospheric Cherenkov Telescopes at two sites once its construction and commissioning are finished. Like its predecessors, CTA relies on Instrument Response Functions (IRFs) to relate the observed and reconstructed properties to the true ones of the primary gamma-ray photons. IRFs are needed for the proper reconstruction of spectral and spatial information of the observed sources and are thus among the data products issued to the observatory users. They are derived from Monte Carlo simulations, depend on observation conditions like the telescope pointing direction or the atmospheric transparency and can evolve with time as hardware ages or is replaced. Producing a complete set of IRFs from simulations for every observation taken is a time-consuming task and not feasible when releasing data products on short timescales. Consequently, interpolation techniques on simulated IRFs are investigated to quickly estimate IRFs for specific observation conditions. However, as some of the IRFs constituents are given as probability distributions, specialized methods are needed. This contribution summarizes and compares the feasibility of multiple approaches to interpolate IRF components in the context of the pyirf python software package and IRFs simulated for the Large-Sized Telescope prototype (LST-1). We will also give an overview of the current functionalities implemented in pyirf.
Ključne besede: Cherenkov Telescope Array, CTA, ground-based very-high-energy gamma-ray observatory, pyirf
Objavljeno v RUNG: 26.09.2023; Ogledov: 564; Prenosov: 4
.pdf Celotno besedilo (987,03 KB)
Gradivo ima več datotek! Več...

10.
Sensitivity of the Cherenkov Telescope Array to emission from the gamma-ray counterparts of neutrino events
Olga Sergijenko, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble the di˙use astrophysical neutrino flux measured by IceCube. We derive the detection probability for di˙erent zenith angles and geomagnetic field configurations. The di˙erence in detectability of sources between CTA-North and CTA-South for the average geomagnetic field is not substantial. We investigate the e˙ect of a higher night-sky background and the preliminary CTA Alpha layout on the detection probability.
Ključne besede: Cherenkov Telescope Array, VHE gamma-rays, neutrinos, Ice Cube, FIRESONG
Objavljeno v RUNG: 19.09.2023; Ogledov: 592; Prenosov: 7
.pdf Celotno besedilo (1,15 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh