Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 54
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
11.
AugerPrime surface detector electronics
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek

Opis: Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, AugerPrime detector upgrade, surface detector array, surface detector electronics
Objavljeno v RUNG: 18.10.2023; Ogledov: 642; Prenosov: 5
.pdf Celotno besedilo (2,07 MB)
Gradivo ima več datotek! Več...

12.
Operations of the Pierre Auger Observatory
R. Caruso, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The construction of the first stage of the Pierre Auger Observatory, designed for research of ultra-high energy cosmic rays, began in 2001 with a prototype system. The Observatory has been collecting data since early 2004 and was completed in 2008. The Observatory is situated at 1400 m above sea level near Malargüe, (Mendoza province) in western Argentina, covering a vast plain of 3000 squared km, known as the Pampa Amarillo. The Observatory consists of a hybrid detector, in which there are 1660 water-Cherenkov stations, forming the Surface Detector (SD) and 27 peripheral atmospheric fluorescence telescopes, comprising the Fluorescence Detector (FD). Over time, the Auger Observatory has been enhanced with different R&D prototypes and is recently being to an important upgrade called AugerPrime. In the present contribution, the general operations of the SD and FD will be described. In particular the FD shift procedure - executable locally in Malargüe or remotely by teams in control rooms abroad within the Collaboration - and the newly SD shifts (operating since 2019) will be explained. Additionally, the SD and FD maintenance campaigns, as well as the data taking and data handling at a basic level, will be reported
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, fluorescence detectors, surface detectors, ultra-high energy, cosmic rays, detector operation
Objavljeno v RUNG: 04.10.2023; Ogledov: 650; Prenosov: 4
.pdf Celotno besedilo (6,83 MB)
Gradivo ima več datotek! Več...

13.
Analysis Result of the High-Energy Cosmic-Ray Proton Spectrum from the ISS-CREAM Experiment
G. Choi, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment successfully recorded the data for about 539 days from August 2017 to February 2019. In this talk, we report the measurement of the cosmic-ray proton energy spectrum from the ISS-CREAM experiment in the energy range of 2.5 TeV - 650 TeV. For the analysis, we used the silicon charge detector (SCD) placed at the top of the ISS-CREAM payload to identify the incoming cosmic-ray charge. The SCD is finely segmented to minimize charge misidentification due to backscatter effects. The four-layer SCD consists of 10,752 silicon pixels, each of which is 1.37×1.57×0.05 cm^3 in size. The calorimeter (CAL) consists of 20 layers of tungsten/scintillating fibers preceded by carbon targets. It provided cosmic-ray tracking, energy determination, and the high-energy trigger. The Top and Bottom Counting detectors (T/BCD) are above and below the CAL, respectively, and provided the low energy trigger. Each T/BCD is composed of an array of 20×20 photodiodes on plastic scintillators. The measured proton spectral index of 2.67±0.02 between 2.5 and 12.5 TeV is consistent with prior CREAM measurements. The spectrum softens above ∼10 TeV consistent with the bump-like structure as reported by CREAM-I+III, DAMPE, and NUCLEON, but ISS-CREAM extends measurements to higher energies than those prior measurement
Ključne besede: ISS-CREAM, silicon charge detector, calorimeter, direct detection, cosmic rays, protons, energy spectrum
Objavljeno v RUNG: 26.09.2023; Ogledov: 556; Prenosov: 6
.pdf Celotno besedilo (2,06 MB)
Gradivo ima več datotek! Več...

14.
Results from the Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment
E.S. Seo, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment took high-energy cosmic ray data for 539 days after its successful installation on the ISS in August 2017. The ISS-CREAM instrument is configured with complementary particle detectors capable of measuring elemental spectra for Z = 1 - 26 nuclei in the energy range 10^12 – 10^15 eV; as well as electrons at multi-TeV energies. The goal is to understand cosmic ray origin, acceleration, and propagation by extending direct measurements of cosmic rays to energies that overlap the energy region of air showers measurements. The four layers of finely segmented Silicon Charge Detectors provide precise charge measurements. They have been designed to minimize hits of accompanying backscattered particles in the same segment as the incident cosmic ray particle to avoid charge misidentification. The sampling tungsten/scintillating-fiber calorimeter, which is identical to the calorimeter for prior CREAM balloon flights, provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors distinguish electrons from nuclei. Our analysis indicates that the data extend well above 100 TeV. Recent results from the ongoing analysis are presented.
Ključne besede: ISS-CREAM, silicon charge detector, calorimeter, direct detection, cosmic rays, electrons, energy spectrum, composition
Objavljeno v RUNG: 26.09.2023; Ogledov: 621; Prenosov: 6
.pdf Celotno besedilo (901,39 KB)
Gradivo ima več datotek! Več...

15.
Cosmic-ray Heavy Nuclei Spectra Using the ISS-CREAM Instrument
S.C. Kang, Jon Paul Lundquist, 2022, objavljeni znanstveni prispevek na konferenci

Opis: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) was designed to study high-energy cosmic rays up to PeV and recorded data from August 22nd, 2017 to February 12th, 2019 on the ISS. In this analysis, the Silicon Charge Detector (SCD), CALorimeter (CAL), and Top and Bottom Counting Detectors (TCD/BCD) are used. The SCD is composed of four layers and provides the measurement of cosmic-ray charges with a resolution of ∼0.2e. The CAL comprises 20 interleaved tungsten plates and scintillators, measures the incident cosmic-ray particles' energies, and provides a high energy trigger. The TCD/BCDs consist of photodiode arrays and plastic scintillators and provide a low-energy trigger. In this analysis, the SCD top layer is used for charge determination. Here, we present the heavy nuclei analysis using the ISS-CREAM instrument.
Ključne besede: ISS-CREAM, silicon charge detector, calorimeter, direct detection, heavy nuclei, cosmic rays, energy spectrum, composition
Objavljeno v RUNG: 26.09.2023; Ogledov: 525; Prenosov: 5
.pdf Celotno besedilo (1,82 MB)
Gradivo ima več datotek! Več...

16.
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
Baobiao Yue, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Fluorescence Detector (FD) of the Pierre Auger Observatory has a large exposure to search for upward-going showers. Constraints have been recently obtained by using 14 years of FD data searching for upward-going showers in the zenith angle range [110◦, 180◦]. In this work, we translate these bounds to upper limits of a possible flux of ultra high energy tau-leptons escaping from the Earth into the atmosphere. Such a mechanism could explain the observation of "anomalous pulses" made by ANITA, that indicated the existence of upward-going air showers with energies above 10[sup]17 eV. As tau neutrinos would be absorbed within the Earth at the deduced angles and energies, a flux of upward-going taus could only be resulted from an unknown type of ultra high energy Beyond Standard Model particle penetrating the Earth with little attenuation, and then creating tau-leptons through interactions within a maximum depth of about 50 km before exiting. We test classes of such models in a generic way and determine upper flux limits of ultra high energy BSM particles as a function of their unknown cross section with matter.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detector, upward-going air showers, Beyond Standard Model particles
Objavljeno v RUNG: 26.09.2023; Ogledov: 502; Prenosov: 6
.pdf Celotno besedilo (544,10 KB)
Gradivo ima več datotek! Več...

17.
Characterization of MOS-FET dosimeters for use in the ATLAS-RadMON system : diploma seminar
Anže Pirc, 2023, raz. nal. na višji ali visoki šoli

Ključne besede: MOS-FET dosimeters, high radiation fields, ATLAS detector, ATLAS-RadMON system
Objavljeno v RUNG: 05.07.2023; Ogledov: 702; Prenosov: 0

18.
Higgs boson decay into two photons at ATLAS : diploma seminar
Bojana Stefanoska, 2022, raz. nal. na višji ali visoki šoli

Ključne besede: Higgs boson, ATLAS detector, photon decay channel, photons, ferromagnetic phase transition
Objavljeno v RUNG: 25.08.2022; Ogledov: 1206; Prenosov: 0
Gradivo ima več datotek! Več...

19.
Calibration of the underground muon detector of the Pierre Auger Observatory
A. Aab, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, izvirni znanstveni članek

Opis: To obtain direct measurements of the muon content of extensive air showers with energy above 10[sup]16.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m[sup]2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m[sup]2 close to the intersection of the shower axis with the ground to much less than one per m[sup]2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years.
Ključne besede: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, Pierre Auger Observatory, underground muon detector, detector calibration
Objavljeno v RUNG: 14.04.2021; Ogledov: 2636; Prenosov: 139
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

20.
Iskanje izvedeno v 0.06 sek.
Na vrh