Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 12 / 12
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
11.
Correlations between photocatalytic activity and chemical structure of Cu-modified TiO2-SiO2 nanoparticle composites
T. Čižmar, doktorska disertacija

Opis: The objective of this dissertation was to examine how copper modification can improve the photocatalytic activity of TiO2-SiO2 and to explain the correlation between Cu concentration and chemical state of Cu cations in the TiO2-SiO2 matrix, as well as the photocatalytic activity under the UV/solar irradiation. The Cu-modified TiO2-SiO2 photocatalysts were prepared by a low temperature sol-gel method based on organic copper, silicon and titanium precursors with varied Cu concentrations (from 0.05 to 3 mol%). The sol-gels were dried at 150 °C to obtain the photocatalysts in the powder form. To test thermal stability, additional set of photocatalysts was obtained by calcinating dried samples in air at 500 °C for 1 h. The photocatalytic activity was determined by a fluorescence-based method of terephthalic acid decomposition. Up to three times increase in photocatalytic activity of air-dried samples is obtained when TiO2-SiO2 matrix is modified with Cu in a narrow concentration range from 0.05 to 0.1 mol%. At higher Cu loadings the photocatalytic activity of Cu-modified photocatalyst is smaller than in the unmodified reference TiO2-SiO2 photocatalyst. Calcined samples showed significantly reduced photocatalytic activity compared to air-dried samples. XRD analysis showed that all Cu-modified TiO2-SiO2 nanocomposites with different Cu concentrations have the same crystalline structure as unmodified TiO2-SiO2 nanocomposites (air-dried or calcined). The addition of Cu does not change the relative ratio between the anatase and brookite phase or unit cell parameters of the two TiO2 crystalline structures. TEM analysis showed that the addition of Cu does not change the morphology of TiO2-SiO2 catalyst dried at 150 °C. The Cu K-edge XANES and EXAFS analysis were used to determine valence state and local structure of Cu cations in Cu-modified TiO2-SiO2 photocatalyst. The results elucidate the mechanism responsible for the improved or hindered photocatalytic activity. In the air-dried samples with low Cu content, which exhibit largest activity, Cu-O-Ti connections are formed, suggesting that the activity enhancement is due to Cu(II) cations attachment on the surface of the photocatalytically active TiO2 nanoparticles, so Cu(II) cations may act as free electron traps, reducing the intensity of recombination between electrons and holes at the TiO2 photocatalyst’s surface. At higher Cu loadings no additional Cu-O-Ti connections are formed, instead only Cu-O-Cu connections are established, indicating the formation of amorphous or nanocrystalline Cu(II) oxide, which hinders the photocatalytic activity of TiO2. Calcination of Cu-modified TiO2-SiO2 photocatalysts at 500 °C induces significant structural changes: Cu-O-Ti connections are lost, Cu partially incorporates into the SiO2 matrix and amorphous copper oxides, which again reduce the photocatalytic activity of the material, are formed.
Najdeno v: ključnih besedah
Ključne besede: titanium dioxide, Cu-modified TiO2-SiO2 photocatalyst, photocatalytic activity, Cu K-edge XANES, EXAFS.
Objavljeno: 17.12.2018; Ogledov: 1301; Prenosov: 62
.pdf Polno besedilo (3,05 MB)

12.
Self-cleaning and photoactive TiO2 – ZrO2 – SiO2 films on thermosensitive and glass substrates
Urška Lavrenčič Štangar, Nives Vodišek, 2017, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Nanosized TiO2 is well-known for its photocatalytic property. From the combination of photocatalysis and photoinduced hydrophilicity properties, thin films of this material have also anti-fogging, self-cleaning and antimicrobial properties. There are numerous deposition techniques e.g. spin-coating, dip-coating, spraying, the most suitable one is chosen based on substrate or solution characteristics. Thin films are often required to be transparent for visible light, especially if we use them on transparent substrates, or they should not affect the color of the substrate. Radicals that are produced during photosensitizing process are able to destroy structure of a substrate and substrate can lose mechanical stability [1,2]. Some studies show that adding a SiO2 protective layer can prevent the damage of the substrate [3–5]. Ti-Zr containing sols were prepared with sol-gel process, where titanium(IV) isopropoxide, zirconium(IV) butoxide and ethanol were hydrolyzed with aqueous solution of perchloric acid. Solution was then refluxed for 48 hours. During that time crystallization and deaggregation took place and that resulted in a stable final solution [6]. To prepare suitable solution for production of durable films silica binder was added. On glass and plastic substrates, thin films were deposited with the dip-coating method and dried with a heat-gun. Thin films were characterized by measurements of photocatalytic activity with terephthalic acid as model organic pollutant subjected to oxidation via fluorescent degradation product, photoinduced superhydrophilicity phenomena, UV-Vis and ATR-FTIR spectroscopy, SEM images, as well as mechanical properties measurements. References [1] H. Schmidt, M. Naumann, T.S. Müller, M. Akarsu, Thin Solid Films (2006) 502, 132– 137. [2] W. A. Daoud, J.H. Xin, Y.H. Zhang, Surf. Sci. (2005) 599, 69–75. [3] Ž. Senić, S. Bauk, M. Vitorović-Todorović, N. Pajić, A. Samolov, D. Rajić, Sci. Tech. Rev. (2011) 61, 63–72. [4] T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, J. Mol. Catal. A: Chem. (2006) 244, 160–167. [5] T. Yuranova, D. Laub, J. Kiwi, Catal. Today (2007) 122, 109–117. [6] N. Vodišek, K. Ramanujachary, V. Brezová, U. Lavrenčič Štangar, Catal. Today (2017) 287, 142–147.
Najdeno v: ključnih besedah
Ključne besede: Self-cleaning surface, photocatalysis, TiO2, ZrO2, SiO2, PVC, PMMA, thermosensitive substrates, glass
Objavljeno: 05.03.2019; Ogledov: 948; Prenosov: 0
.pdf Polno besedilo (5,20 MB)

Iskanje izvedeno v 0 sek.
Na vrh