Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


111 - 120 / 236
Na začetekNa prejšnjo stran891011121314151617Na naslednjo stranNa konec
111.
The hybrid energy spectrum of Telescope Array’s Middle Drum Detector and surface array
R.U. Abbasi, Jon Paul Lundquist, 2015, izvirni znanstveni članek

Opis: The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.
Ključne besede: Cosmic rays, Energy spectrum, Telescope Array, Hybrid, Ultra high energy
Objavljeno v RUNG: 27.04.2020; Ogledov: 2626; Prenosov: 0
Gradivo ima več datotek! Več...

112.
Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode
R.U. Abbasi, Jon Paul Lundquist, 2015, izvirni znanstveni članek

Opis: Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly’s Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.
Ključne besede: Ultra-High Energy Cosmic Rays, Cosmic ray composition, Atmospheric fluorescence, Extensive air shower array, Hybrid, Telescope Array
Objavljeno v RUNG: 24.04.2020; Ogledov: 2929; Prenosov: 0
Gradivo ima več datotek! Več...

113.
Raman LIDARs and atmospheric calibration along the line-of-sight of the Cherenkov Telescope Array
Samo Stanič, Longlong Wang, Marko Zavrtanik, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. Employing more than 100 (north and south sites) Imaging Atmospheric Cherenkov Telescopes in the northern and southern hemispheres, it was designed to reach unprecedented sensitivity and energy resolution. Understanding and correcting for systematic biases on the absolute energy scale and instrument response functions will be a cru- cial issue for the performance of CTA. The Montpellier group and the Spanish/Italian/Slovenian collaboration are currently building two Raman LIDAR prototypes for the online atmospheric cal- ibration along the line-of-sight of the CTA. Requirements for such a solution include the ability to characterize aerosol extinction at two wavelengths to distances up to 30 km with an accuracy better than 5%, within exposure time scales of about a minute, steering capabilities and close interaction with the CTA array control and data acquisition system as well as other auxiliary in- struments. Our Raman LIDARs have design features that make them different from those used in atmospheric science and are characterized by large collecting mirrors (∼2.5 m 2 ), liquid light- guides that collect the light at the focal plane and transport it to the readout system, reduced acquisition time and highly precise Raman spectrometers. The Raman LIDARs will participate in a cross-calibration and characterization campaign of the atmosphere at the CTA North site at La Palma, together with other site characterization instruments. After a one-year test period there, an in-depth evaluation of the solutions adopted by the two projects will lead to a final Raman LIDAR design proposal for both CTA sites.
Ključne besede: Raman lidar atmospheric calibration Cherenkov Telescope Array
Objavljeno v RUNG: 29.08.2019; Ogledov: 3365; Prenosov: 102
.pdf Celotno besedilo (1,29 MB)

114.
115.
116.
117.
118.
119.
120.
High-Energy Astroparticle Detection
Lili Yang, predavanje na tuji univerzi

Opis: Astroparticle Physics has evolved as a new interdisciplinary field at the intersection of particle physics, astronomy and cosmology, addressing some of the most fundamental questions of contemporary physics. Neutrinos, cosmic rays, gamma rays and also gravitational waves as the cosmic messengers, take the information from the universe to tell us more about those energetic astro phenomena. Physicists have been developing experiments to detect and study these messengers. I would like to talk about the basic ideas and searching results from the dedicate cosmic ray detector Pierre Auger Observatory and also the future performance of Cherenkov Telescope Array (CTA), the next-generation ground based telescope array. CTA will play an very important role in detecting GeV-TeV gamma rays and represents the era of precision gamma ray astronomy. The multi-messenger and multi-wavelength study with various messengers are the main field in astrophysics.
Ključne besede: Cherenkov Telescope Array
Objavljeno v RUNG: 17.01.2018; Ogledov: 3675; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh