Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


121 - 130 / 337
Na začetekNa prejšnjo stran9101112131415161718Na naslednjo stranNa konec
121.
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
Baobiao Yue, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Fluorescence Detector (FD) of the Pierre Auger Observatory has a large exposure to search for upward-going showers. Constraints have been recently obtained by using 14 years of FD data searching for upward-going showers in the zenith angle range [110◦, 180◦]. In this work, we translate these bounds to upper limits of a possible flux of ultra high energy tau-leptons escaping from the Earth into the atmosphere. Such a mechanism could explain the observation of "anomalous pulses" made by ANITA, that indicated the existence of upward-going air showers with energies above 10[sup]17 eV. As tau neutrinos would be absorbed within the Earth at the deduced angles and energies, a flux of upward-going taus could only be resulted from an unknown type of ultra high energy Beyond Standard Model particle penetrating the Earth with little attenuation, and then creating tau-leptons through interactions within a maximum depth of about 50 km before exiting. We test classes of such models in a generic way and determine upper flux limits of ultra high energy BSM particles as a function of their unknown cross section with matter.
Ključne besede: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detector, upward-going air showers, Beyond Standard Model particles
Objavljeno v RUNG: 26.09.2023; Ogledov: 567; Prenosov: 6
.pdf Celotno besedilo (544,10 KB)
Gradivo ima več datotek! Več...

122.
The fitting procedure for longitudinal shower profiles observed with the fluorescence detector of the Pierre Auger Observatory
J. A. Bellido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory uses fluorescence telescopes in conjunction with ground level particle detectors to measure high-energy cosmic rays and reconstruct, with greater precision, their arrival direction, their energy and the depth of shower maximum. The depth of shower maximum is important to infer cosmic ray mass composition. The fluorescence detector is capable of directly measuring the longitudinal shower development, which is used to reconstruct the cosmic ray energy and the atmospheric depth of shower maximum. However, given the limited field of view of the fluorescence detector, the shower profile is not always fully contained within the detector observation volume. Therefore, considerations need to be taken in order to reconstruct some events. In this contribution we will describe the method that the Pierre Auger Collaboration uses to reconstruct the longitudinal profiles of showers and present the details of its performance, namely its resolution and systematic uncertainties.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, longitudinal shower profiles
Objavljeno v RUNG: 20.09.2023; Ogledov: 719; Prenosov: 6
.pdf Celotno besedilo (827,67 KB)
Gradivo ima več datotek! Več...

123.
Sensitivity of the Cherenkov Telescope Array to emission from the gamma-ray counterparts of neutrino events
Olga Sergijenko, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble the di˙use astrophysical neutrino flux measured by IceCube. We derive the detection probability for di˙erent zenith angles and geomagnetic field configurations. The di˙erence in detectability of sources between CTA-North and CTA-South for the average geomagnetic field is not substantial. We investigate the e˙ect of a higher night-sky background and the preliminary CTA Alpha layout on the detection probability.
Ključne besede: Cherenkov Telescope Array, VHE gamma-rays, neutrinos, Ice Cube, FIRESONG
Objavljeno v RUNG: 19.09.2023; Ogledov: 627; Prenosov: 7
.pdf Celotno besedilo (1,15 MB)
Gradivo ima več datotek! Več...

124.
HAWC J2227+610: a potential PeVatron candidate for the CTA in the northern hemisphere
Gaia Verna, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Recent observations of the gamma-ray source HAWC J2227+610 by Tibet AS+MD and LHAASO confirm the special interest of this source as a galactic PeVatron candidate in the northern hemi-sphere. HAWC J2227+610 emits Very High Energy (VHE) gamma-rays up to 500 TeV, from a region coincident with molecular clouds and significantly displaced from the nearby pulsar J2229+6114. Even if this morphology favours an hadronic origin, both leptonic or hadronic models can describe the current VHE gamma-ray emission. The morphology of the source is not well constrained by the present measurements and a better characterisation would greatly help the understanding of the underlying particle acceleration mechanisms. The Cherenkov Telescope Array (CTA) will be the future most sensitive Imaging Atmospheric Cherenkov Telescope and, thanks to its unprecedented angular resolution, could contribute to better constrain the nature of this source. The present work investigates the potentiality of CTA to study the morphology and the spectrum of HAWC J2227+610. For this aim, the source is simulated assuming the hadronic model proposed by the Tibet AS+MD collaboration, recently fitted on multi-wavelength data, and two spatial templates associated to the source nearby molecular clouds. Di˙erent CTA layouts and observation times are considered. A 3D map based analysis shows that CTA is able to significantly detect the extension of the source and to attribute higher detection significance to the simulated molecular cloud template compared to the alternative one. CTA data does not allow to disentangle the hadronic and the leptonic emission models. However, it permits to correctly reproduce the simulated parent proton spectrum characterized by a ∼ 500 TeV cuto˙.
Ključne besede: Cherenkov Telescope Array, HAWC J2227+610, very-high-energy gamma-rays
Objavljeno v RUNG: 19.09.2023; Ogledov: 546; Prenosov: 4
.pdf Celotno besedilo (2,17 MB)
Gradivo ima več datotek! Več...

125.
Exploring the population of Galactic very-high-energy γ-ray sources
Constantin Steppa, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a di˙use signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five di˙erent spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented.
Ključne besede: Cherenkov Telescope Array, very-high energy gamma-rays, gamma-ray sources
Objavljeno v RUNG: 18.09.2023; Ogledov: 632; Prenosov: 5
.pdf Celotno besedilo (744,16 KB)
Gradivo ima več datotek! Več...

126.
Prospects for Galactic transient sources detection with the Cherenkov Telescope Array
Alicia López-Oramas, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV–GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E>100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume di˙erent array configurations and observing strategies.
Ključne besede: Cherenkov Telescope Array, galactic transient sources, very-high energy gamma rays
Objavljeno v RUNG: 18.09.2023; Ogledov: 625; Prenosov: 4
.pdf Celotno besedilo (1,57 MB)
Gradivo ima več datotek! Več...

127.
Performance of the Cherenkov Telescope Array in the presence of clouds
Mario Pecimotika, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the future ground-based observatory for gamma-ray astronomy at very high energies. The atmosphere is an integral part of every Cherenkov telescope. Di˙erent atmospheric conditions, such as clouds, can reduce the fraction of Cherenkov photons produced in air showers that reach ground-based telescopes, which may a˙ect the performance. Decreased sensitivity of the telescopes may lead to misconstructed energies and spectra. This study presents the impact of various atmospheric conditions on CTA performance. The atmospheric transmission in a cloudy atmosphere in the wavelength range from 203 nm to 1000 nm was simulated for di˙erent cloud bases and di˙erent optical depths using the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN output files were used as inputs for generic Monte Carlo simulations. The analysis was performed using the MAGIC Analysis and Reconstruction Software (MARS) adapted for CTA. As expected, the e˙ects of clouds are most evident at low energies, near the energy threshold. Even in the presence of dense clouds, high-energy gamma rays may still trigger the telescopes if the first interaction occurs lower in the atmosphere, below the cloud base. A method to analyze very high-energy data obtained in the presence of clouds is presented. The systematic uncertainties of the method are evaluated. These studies help to gain more precise knowledge about the CTA response to cloudy conditions and give insights on how to proceed with data obtained in such conditions. This may prove crucial for alert-based observations and time-critical studies of transient phenomena.
Ključne besede: Cherenkov Telescope Array, very-high energy gamma rays, MODerate resolution atmospheric TRANsmission code, MAGIC Analysis and Reconstruction Software
Objavljeno v RUNG: 18.09.2023; Ogledov: 610; Prenosov: 4
.pdf Celotno besedilo (980,51 KB)
Gradivo ima več datotek! Več...

128.
Performance of a proposed event-type based analysis for the Cherenkov Telescope Array
Tarek Hassan, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure.
Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, event-type based analysis
Objavljeno v RUNG: 18.09.2023; Ogledov: 595; Prenosov: 7
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

129.
The Cherenkov Telescope Array transient and multi-messenger program
Alessandro Carosi, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprece-dented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instru-ment for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these di˙erent cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large e˙ective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not a˙ected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Tran-sients physics working group to perform the study of transient sources in the very-high-energy regime.
Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, CTA Transient program, multi-wavelength astronomy, multi-messenger astronomy
Objavljeno v RUNG: 18.09.2023; Ogledov: 521; Prenosov: 6
.pdf Celotno besedilo (1,63 MB)
Gradivo ima več datotek! Več...

130.
Reconstruction of stereoscopic CTA events using deep learning with CTLearn
Tjark Miener, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.
Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, CTLearn
Objavljeno v RUNG: 18.09.2023; Ogledov: 555; Prenosov: 5
.pdf Celotno besedilo (4,96 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh