Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 27
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
11.
Copper bioavailability and leaching in conventional and organic viticulture under environmental stress
Erika Jež, Elisa Pellegrini, Marco Contin, 2023, izvirni znanstveni članek

Opis: The continuous use of Cu-based fungicides in viticulture has caused Cu accumulation in soils, which represents a major environmental and toxicological concern. The purpose of this study was to verify whether the organic management would be more resilient to temperature and moisture stresses in comparison to conventional practices. Two organic and two conventional vineyard soils, contrasting in pH, were exposed for six months to temperature stress (29 °C), moisture stress (10% water holding capacity—WHC), and combined stresses (29 °C—10% WHC). Main soil properties, Cu speciation, bioavailability, and leaching were monitored before and after 6 months’ incubation. Results confirm that the increase of temperature caused a decrease in both total organic carbon (TOC) and dissolved organic carbon (DOC) (up to 19% and 49%, respectively), a decrease in available ammonium, and an increase in nitrate. Moisture stress tends to mitigate some of these changes. Despite that, changes of Cu bioavailability and leaching were limited and rarely significant. Moreover, no regular trends between conventional and organic management could be observed. Changes in soil pH and total N (TN) appeared as the most influencing properties to regulate Cu behavior in vineyard soils. Calcareous soils were more resistant to environmental stresses compared to acid soils, regardless of the type of management (conventional or organic).
Ključne besede: soil copper, climate changes, soil organic matter, organic viticulture, BCR speciation
Objavljeno v RUNG: 22.02.2023; Ogledov: 1105; Prenosov: 17
.pdf Celotno besedilo (2,57 MB)
Gradivo ima več datotek! Več...

12.
Measuring the Aerosol Light Absorption Coefficient - a Not-So-Easy Task With Relevance for the Global and Regional Climate
Griša Močnik, 2022, vabljeno predavanje na konferenci brez natisa

Opis: The photothermal interferometer measurement of aerosol absorption, using pump lasers (532, 1064 nm) and phase sensitive detection results in 4 and 6% measurement uncertainty. It is calibrated traceably to primary standards and thereby a potential reference.
Ključne besede: aerosol absorption, black carbon, climate change
Objavljeno v RUNG: 20.07.2022; Ogledov: 1346; Prenosov: 0
Gradivo ima več datotek! Več...

13.
Measuring aerosol absorption directly - PTI methods to the rescue
Griša Močnik, vabljeno predavanje na konferenci brez natisa

Ključne besede: aerosol absorption, black carbon, climate change
Objavljeno v RUNG: 19.07.2022; Ogledov: 1274; Prenosov: 0
Gradivo ima več datotek! Več...

14.
CO2 dynamics and dissolutional processes in the karst vadose zone
Lovel Kukuljan, 2022, doktorska disertacija

Opis: The dynamics and distribution of carbon dioxide (CO2) in karst systems are crucial for understanding fundamental karst processes, namely precipitation and dissolution, which drive karst development both at the surface and underground. The study of CO2 transport provides valuable insights into the role of karst systems in the global carbon cycle and the impact on present climate, but also into the growth of speleothems, which are one of the most reliable terrestrial archives for palaeoclimate reconstruction. Due to the complexity of karst systems, long-term monitoring and high-resolution analyses of cave air and water geochemistry are essential to better understand the controlling factors that affect these processes and their outcomes. In the framework of this dissertation, cave climate and water hydrochemistry monitoring was established in a side-passages of the renowned Postojna Cave in Slovenia during 2017–2021. In the Pisani Passage, high CO2 concentrations, large temporal variations and a heterogeneous distribution of CO2, as well as extreme dissolution features, have already been detected in previous studies. The aim of the present study was to investigate these observations in depth and to find the reasons for their occurrence. This led to creating of a conceptual model for CO2 transport in karst systems that would be valid not only in this case but in karst areas worldwide. The first focus of the study is dedicated to understanding the spatio-temporal dynamics of the partial pressure of CO2 (pCO2) in the Pisani Passage, which is mainly transported by advection (i.e., cave ventilation). Continuous measurements of airflow velocity, air temperature and pCO2 showed (1) that airflow through the karst massif is driven by both the action of the chimney effect and external winds, and (2) that the relationship between the direction of airflow, the configuration of airflow pathways and the connection to the outside explains the observed variations in pCO2. Due to the particular configuration of the airflow pathways, the terminal chamber of Pisani Passage accumulates high levels of CO2 (>10,000 ppm) and forms high vertical gradients of up to 1000 ppm/m. The pCO2 is low and uniform during updraft when outside air flows into the cave chamber through open, unobstructed passages (i.e., high-flow, low-pCO2 pathways). When the airflow reverses direction to downdraft, the chamber is fed by low-flow, high-pCO2 pathways that enter the cave passage through a CO2-rich fracture network embedded in a vadose zone. The spatial distribution of inlets and outlets results in minimal mixing between the low and high pCO2 pathways, leading to high and persistent pCO2 gradients. In addition to the chimney effect driving the seasonal ventilation of the cave, the specific signs of a secondary wind-driven effect were also found; which is the second focus of this study. Wind flow over irregular topography leads to near-surface air pressure variations, and thus, pressure differences between cave entrances at different locations. Pressure differences depend on wind speed and direction and their relationship to surface topography and the location of cave entrances. Winds can act in the same or opposite direction as the chimney effect, either enhancing, diminishing or even reversing the direction of density-driven airflows. In the case of Postojna Cave, north and northeast winds enhance the downdraft and limit updraft, while the opposite is true for south winds, which enhance the updraft and limit downdraft. To investigate the importance of wind-driven flow, a computational fluid dynamics model was used to calculate the wind pressure field over Postojna Cave and the pressure differences between selected points for different configurations of wind speed and direction. These values were compared with those obtained from airflow measurements in the cave and from simple theoretical considerations. Despite the simplicity of the approach and the complexity of the ca
Ključne besede: cave climate, cave ventilation, carbon dioxide, dripwater geochemistry, speleothem corrosion, Postojna Cave, Slovenia
Objavljeno v RUNG: 22.06.2022; Ogledov: 1744; Prenosov: 67
.pdf Celotno besedilo (8,45 MB)

15.
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Vaios Moschos, Katja Dzepina, Deepika Bhattu, Houssni Lamkaddam, Roberto Casotto, Kaspar R. Daellenbach, Francesco Canonaco, Pragati Rai, Wenche Aas, Silvia Becagli, Giulia Calzolai, Konstantinos Eleftheriadis, Claire E. Moffett, Jürgen Schnelle-Kreis, Mirko Severi, Sangeeta Sharma, Henrik Skov, Mika Vestenius, Wendy Zhang, Hannele Hakola, Heidi Hellén, Lin Huang, Jean-Luc Jaffrezo, Andreas Massling, Jakob K. Nøjgaard, Tuuka Petäjä, Olga Popovicheva, Rebecca J. Sheesley, Rita Traversi, Karl Espen Yttri, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Imad El Haddad, 2022, izvirni znanstveni članek

Opis: Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.
Ključne besede: Arctic, Organic aerosols, Emission sources, Climate change
Objavljeno v RUNG: 01.03.2022; Ogledov: 1547; Prenosov: 0
Gradivo ima več datotek! Več...

16.
Measuring how light-absorbing aerosols heat the atmosphere
Griša Močnik, 2021, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Ključne besede: aerosols, climate change
Objavljeno v RUNG: 27.09.2021; Ogledov: 1571; Prenosov: 0
Gradivo ima več datotek! Več...

17.
Consistent determination of the heating rate of light-absorbing aerosol using wavelength- and time-dependent Aethalometer multiple-scattering correction
Luca Ferrero, Vera Bernardoni, Luca Santagostini, Sergio Cogliati, Francesca Soldan, Sara Valentini, Dario Massabò, Griša Močnik, Asta Gregorič, Martin Rigler, 2021, izvirni znanstveni članek

Opis: Accurate and temporally consistent measurements of light absorbing aerosol (LAA) heating rate (HR) and of its source apportionment (fossil-fuel, FF; biomass-burning, BB) and speciation (black and brown Carbon; BC, BrC) are needed to evaluate LAA short-term climate forcing. For this purpose, wavelength- and time-dependent accurate LAA absorption coefficients are required. HR was experimentally determined and apportioned (sources/species) in the EMEP/ACTRIS/COLOSSAL-2018 winter campaign in Milan (urban-background site). Two Aethalometers (AE31/AE33) were installed together with a MAAP, CPC, OPC, a low volume sampler (PM2.5) and radiation instruments. AE31/AE33 multiple-scattering correction factors (C) were determined using two reference systems for the absorption coefficient: 1) 5-wavelength PP_UniMI with low time resolution (12 h, applied to PM2.5 samples); 2) timely-resolved MAAP data at a single wavelength. Using wavelength- and time-independent C values for the AE31 and AE33 obtained with the same reference device, the total HR showed a consistency (i.e. reproducibility) with average values comparable at 95% probability. However, if different reference devices/approaches are used, i.e. MAAP is chosen as reference instead of a PP_UniMI, the HR can be overestimated by 23-30% factor (by both AE31/AE33). This became more evident focusing on HR apportionment: AE33 data (corrected by a wavelength- and time-independent C) showed higher HRFF (+24±1%) and higher HRBC (+10±1%) than that of AE31. Conversely, HRBB and HRBrC were -28±1% and -29±1% lower for AE33 compared to AE31. These inconsistencies were overcome by introducing a wavelength-dependent Cλ for both AE31 and AE33, or using multi-wavelength apportionment methods, highlighting the need for further studies on the influence of wavelength corrections for HR determination. Finally, the temporally-resolved determination of C resulted in a diurnal cycle of the HR not statistically different whatever the source- speciation- apportionment used.
Ključne besede: climate change, heating rate, black carbon, light absorbing aerosols
Objavljeno v RUNG: 09.06.2021; Ogledov: 2052; Prenosov: 0
Gradivo ima več datotek! Več...

18.
The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, Ezio Bolzacchini, 2021, izvirni znanstveni članek

Opis: We experimentally quantified the impact of cloud fraction and cloud type on the heating rate (HR) of black and brown carbon (HRBC and HRBrC). In particular, we examined in more detail the cloud effect on the HR detected in a previous study (Ferrero et al., 2018). High-time-resolution measurements of the aerosol absorption coefficient at multiple wavelengths were coupled with spectral measurements of the direct, diffuse and surface reflected irradiance and with lidar–ceilometer data during a field campaign in Milan, Po Valley (Italy). The experimental set-up allowed for a direct determination of the total HR (and its speciation: HRBC and HRBrC) in all-sky conditions (from clear-sky conditions to cloudy). The highest total HR values were found in the middle of winter (1.43 ± 0.05 K d−1), and the lowest were in spring (0.54 ± 0.02 K d−1). Overall, the HRBrC accounted for 13.7 ± 0.2 % of the total HR, with the BrC being characterized by an absorption Ångström exponent (AAE) of 3.49 ± 0.01. To investigate the role of clouds, sky conditions were classified in terms of cloudiness (fraction of the sky covered by clouds: oktas) and cloud type (stratus, St; cumulus, Cu; stratocumulus, Sc; altostratus, As; altocumulus, Ac; cirrus, Ci; and cirrocumulus–cirrostratus, Cc–Cs). During the campaign, clear-sky conditions were present 23 % of the time, with the remaining time (77 %) being characterized by cloudy conditions. The average cloudiness was 3.58 ± 0.04 oktas (highest in February at 4.56 ± 0.07 oktas and lowest in November at 2.91 ± 0.06 oktas). St clouds were mostly responsible for overcast conditions (7–8 oktas, frequency of 87 % and 96 %); Sc clouds dominated the intermediate cloudiness conditions (5–6 oktas, frequency of 47 % and 66 %); and the transition from Cc–Cs to Sc determined moderate cloudiness (3–4 oktas); finally, low cloudiness (1–2 oktas) was mostly dominated by Ci and Cu (frequency of 59 % and 40 %, respectively). HR measurements showed a constant decrease with increasing cloudiness of the atmosphere, enabling us to quantify for the first time the bias (in %) of the aerosol HR introduced by the simplified assumption of clear-sky conditions in radiative-transfer model calculations. Our results showed that the HR of light-absorbing aerosol was ∼ 20 %–30 % lower in low cloudiness (1–2 oktas) and up to 80 % lower in completely overcast conditions (i.e. 7–8 oktas) compared to clear-sky ones. This means that, in the simplified assumption of clear-sky conditions, the HR of light-absorbing aerosol can be largely overestimated (by 50 % in low cloudiness, 1–2 oktas, and up to 500 % in completely overcast conditions, 7–8 oktas). The impact of different cloud types on the HR was also investigated. Cirrus clouds were found to have a modest impact, decreasing the HRBC and HRBrC by −5 % at most. Cumulus clouds decreased the HRBC and HRBrC by −31 ± 12 % and −26 ± 7 %, respectively; cirrocumulus–cirrostratus clouds decreased the HRBC and HRBrC by −60 ± 8 % and −54 ± 4 %, which was comparable to the impact of altocumulus (−60 ± 6 % and −46 ± 4 %). A higher impact on the HRBC and HRBrC suppression was found for stratocumulus (−63 ± 6 % and −58 ± 4 %, respectively) and altostratus (−78 ± 5 % and −73 ± 4 %, respectively). The highest impact was associated with stratus, suppressing the HRBC and HRBrC by −85 ± 5 % and −83 ± 3 %, respectively. The presence of clouds caused a decrease of both the HRBC and HRBrC (normalized to the absorption coefficient of the respective species) of −11.8 ± 1.2 % and −12.6 ± 1.4 % per okta. This study highlights the need to take into account the role of both cloudiness and different cloud types when estimating the HR caused by both BC and BrC and in turn decrease the uncertainties associated with the quantification of their impact on the climate.
Ključne besede: black carbon, brown carbon, cloud, atmospheric heating rate, climate change
Objavljeno v RUNG: 29.03.2021; Ogledov: 2339; Prenosov: 0
Gradivo ima več datotek! Več...

19.
Displaying commons and resonances between art and science for a new start from the zero
2020, radijska ali televizijska oddaja, podkast, intervju, novinarska konferenca

Ključne besede: sciart, science art, commoning, diversity, artsci, streams, weather forecasting, climate change, communication, curation
Objavljeno v RUNG: 16.02.2021; Ogledov: 2229; Prenosov: 21
URL Povezava na celotno besedilo

20.
Iskanje izvedeno v 0.06 sek.
Na vrh