Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Changes in exhaled volatile organic compounds following indirect bronchial challenge in suspected asthma
Adam Peel, Ran Wang, Waqar Ahmed, Iain R. White, Maxim Wilkinson, Yoon K. Loke, Andrew M. Wilson, Stephen J. Fowler, 2023, izvirni znanstveni članek

Opis: Background Inhaled mannitol provokes bronchoconstriction via mediators released during osmotic degranulation of inflammatory cells, and, hence represents a useful diagnostic test for asthma and model for acute attacks. We hypothesised that the mannitol challenge would trigger changes in exhaled volatile organic compounds (VOCs), generating both candidate biomarkers and novel insights into their origin. Methods Participants with a clinical diagnosis of asthma, or undergoing investigation for suspected asthma, were recruited. Inhaled mannitol challenges were performed, followed by a sham challenge after 2 weeks in participants with bronchial hyper-responsiveness (BHR). VOCs were collected before and after challenges and analysed using gas chromatography–mass spectrometry. Results Forty-six patients (mean (SD) age 52 (16) years) completed a mannitol challenge, of which 16 (35%) were positive, and 15 of these completed a sham challenge. Quantities of 16 of 51 identified VOCs changed following mannitol challenge (p<0.05), of which 11 contributed to a multivariate sparse partial least square discriminative analysis model, with a classification error rate of 13.8%. Five of these 16 VOCs also changed (p<0.05) in quantity following the sham challenge, along with four further VOCs. In patients with BHR to mannitol distinct postchallenge VOC signatures were observed compared with post-sham challenge. Conclusion Inhalation of mannitol was associated with changes in breath VOCs, and in people with BHR resulted in a distinct exhaled breath profile when compared with a sham challenge. These differentially expressed VOCs are likely associated with acute airway inflammation and/or bronchoconstriction and merit further investigation as potential biomarkers in asthma.
Ključne besede: asthma, exhaled volatile organic compounds, pulmonology, breath metabolomics
Objavljeno v RUNG: 31.07.2023; Ogledov: 874; Prenosov: 3
URL Povezava na datoteko

2.
Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS
Oluwasola Lawal, Howbeer Muhamadali, Waqar M Ahmed, Iain R. White, Tamara M E Nijsen, Roy Goodacre, Stephen J Fowler, 2018, izvirni znanstveni članek

Opis: Ventilator-associated pneumonia (VAP) is a healthcare-acquired infection arising from the invasion of the lower respiratory tract by opportunistic pathogens in ventilated patients. The current method of diagnosis requires the culture of an airway sample such as bronchoalveolar lavage, which is invasive to obtain and may take up to seven days to identify a causal pathogen, or indeed rule out infection. While awaiting results, patients are administered empirical antibiotics; risks of this approach include lack of effect on the causal pathogen, contribution to the development of antibiotic resistance and downstream effects such as increased length of intensive care stay, cost, morbidity and mortality. Specific biomarkers which could identify causal pathogens in a timely manner are needed as they would allow judicious use of the most appropriate antimicrobial therapy. Volatile organic compound (VOC) analysis in exhaled breath is proposed as an alternative due to its non-invasive nature and its potential to provide rapid diagnosis at the patient's bedside. VOCs in exhaled breath originate from exogenous, endogenous, as well as microbial sources. To identify potential markers, VAP-associated pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus were cultured in both artificial sputum medium and nutrient broth, and their headspaces were sampled and analysed for VOCs. Previously reported volatile markers were identified in this study, including indole and 1-undecene, alongside compounds that are novel to this investigation, cyclopentanone and 1-hexanol. We further investigated media components (substrates) to identify those that are essential for indole and cyclopentanone production, with potential implications for understanding microbial metabolism in the lung.
Ključne besede: bacteria, exhaled breath, infection, ventilator-associated pneumonia, volatile organic compounds
Objavljeno v RUNG: 18.07.2019; Ogledov: 2854; Prenosov: 0

Iskanje izvedeno v 0.02 sek.
Na vrh