Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Electronic transport properties of graphene and graphene-related materials
Srinivasa Rao Pathipati, 2014, doktorska disertacija

Najdeno v: ključnih besedah
Povzetek najdenega: ...grafen, reduciran grafenov oksid, transport naboja, čas preleta, organski tranzistor, adsorbati, dopiranje, zmesi,...
Ključne besede: grafen, reduciran grafenov oksid, transport naboja, čas preleta, organski tranzistor, adsorbati, dopiranje, zmesi, perileni, politiofeni, grafenski nanotrakovi, disertacije
Objavljeno: 22.01.2015; Ogledov: 2020; Prenosov: 54
URL Polno besedilo (0,00 KB)
Gradivo ima več datotek! Več...

2.
Transport električnega naboja v organskih polprevodnikih, simulacija po metodi Monte Carlo
Robert Hudej, Gvido Bratina, Egon Pavlica, 2003, izvirni znanstveni članek

Opis: The electric-charge transport in organic semiconductors is essentially different to the transport in ordered inorganic crystals. The reason is in thelocalization of the energy states, which act as charge-carrier transport channels between molecules. Consequently, the determination of the basic transport parameters in organic materials is inherently more involved than in their inorganic counterparts. The analytical methods that are used to describe charge transport in inorganic materials are unsuitable, since they are based on the extended electronic energy structure. We report here on the simulation of charge transport in organic semiconductor thin films. The simulation is based on the Monte Carlo method and describes the charge-carrier transport within the framework of carrier hopping between the sites. We employed a Gaussian energy distribution of the hopping sites with disorder elements. The degree of disorder is characterized by the width of the Gaussian distribution and is measured in eV units. The results of the transport simulation in 3,4,9,10-perylenedianhydride tetracarboxylic acid (PTCDA) show that the photogenerated charge-carrier current depends on the film thickness, temperature and disorder degree. The simulated photocurrents have the same amplitude in thick films as in the thin films, but the overall shape of the I(t) curve is more dispersive in thin films. The charge-carrier mobility decreases with the increasing degree of disorder at a given temperature. The simulation of the photogenerated positive charge carriers current matches with the time-of-flight experiment in a glass/ITO/PTCDA(600 nm)/In heterostructure at room temperature and an applied bias voltage of 8 V.
Najdeno v: ključnih besedah
Ključne besede: neurejeni kristali, metoda Monte Carlo, organski polprevodniki, transport naboja, PTCDA, tranzientne meritve
Objavljeno: 10.07.2015; Ogledov: 2235; Prenosov: 5
URL Polno besedilo (0,00 KB)

3.
Enhancement of Charge Transport in Polythiophene Semiconducting Polymer by Blending with Graphene Nanoparticles
Egon Pavlica, Gvido Bratina, 2019, izvirni znanstveni članek

Opis: This paper describes a study on the charge transport in a composite of liquid‐exfoliated graphene nanoparticles (GNPs) and a polythiophene semiconducting polymer. While the former component is highly conducting, although it consists of isolated nanostructures, the latter offers an efficient charge transport path between the individual GNPs within the film, overall yielding enhanced charge transport properties of the resulting bi‐component system. The electrical characteristics of the composite layers were investigated by means of measurements of time‐of‐flight photoconductivity and transconductance in field‐effect transistors. In order to analyze both phenomena separately, charge density and charge mobility contributions to the conductivity were singled out. With the increasing GNP concentration, the charge mobility was found to increase, thereby reducing the time spent by the carriers on the polymer chains. In addition, for GNP loading above 0.2 % (wt.), an increase of free charge density was observed that highlights an additional key role played by doping. Variable‐range hopping model of a mixed two‐ and three‐dimensional transport is explained using temperature dependence of mobility and free charge density. The temperature variation of free charge density was related to the electron transfer from polythiophene to GNP, with an energy barrier of 24 meV.
Najdeno v: ključnih besedah
Povzetek najdenega: ...grafen, polimeri, transport električnega naboja, časovno odvisna fotoprevodnost...
Ključne besede: grafen, polimeri, transport električnega naboja, časovno odvisna fotoprevodnost
Objavljeno: 23.08.2019; Ogledov: 104; Prenosov: 0
.pdf Polno besedilo (1,78 MB)

Iskanje izvedeno v 0 sek.
Na vrh