Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Recent H.E.S.S results on pulsar wind nebulae
Serguei Vorobiov, Vincent Marandon, 2010, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: ključnih besedah
Ključne besede: ground based y-ray telescopes, H.E.S.S. system, Cherenkov telescopes, pulsar wind nebulae
Objavljeno: 25.04.2014; Ogledov: 868; Prenosov: 0
URL Polno besedilo (0,00 KB)

2.
H.E.S.S. observation of the Vela X nebula
Serguei Vorobiov, Bernhard Glück, 2010, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: ključnih besedah
Povzetek najdenega: ...y-ray telescopes, H.E.S.S. system, Cherenkov telescopes, pulsar wind nebulae, ...
Ključne besede: ground based y-ray telescopes, H.E.S.S. system, Cherenkov telescopes, pulsar wind nebulae
Objavljeno: 25.04.2014; Ogledov: 829; Prenosov: 1
URL Polno besedilo (0,00 KB)

3.
Measurements and modeling of air mass motion in the troposphere
Miha Živec, 2016, diplomsko delo

Opis: Throughout the history human race depended on weather, so one of the priorities for its survival was to understand weather patterns and to be able to forecast weather. With the development of powerful computers, atmospheric numerical methods and precision instruments for atmospheric monitoring, it is possible to predict weather with greater accuracy and for a longer period of time ahead. At the same time, we are able to gain improved understanding of physical processes that occur in the atmosphere and represent one of most important features in our world. This diploma thesis focuses on the lowest part of the atmosphere - troposphere only, as all weather occurs in the troposphere. Weather is a complete collection of momentary thermodynamic states in the atmosphere and is defined with thermodynamic variables and relations between them. The goal of this thesis is development and presentation of a new way to determine the direction and speed of air mass movement, based on the combination of passive and active remote sensing techniques. A lidar is being used to determine the range to an object, in our case a cloud, that can be used as a tracer in the air current. Simultaneously with lidar ranging of clouds that same clouds are being visually monitored in a series of optical photographs. Selecting and following the temporal evolution of distinct cloud features and their range allows us to calculate the speed of clouds. The performance of this method was tested on four cases in Feb. and Mar. 2016. Measurements were performed in Ajdovščina in different weather conditions. Along with remote sensing (infra-red lidar and optical cameras), ground measurements of wind at Ajdovščina were performed. Wind speeds and directions obtained from remote sensing were compared to atmospheric sounding data from Ljubljana and Udine at similar heights and performed within as small as possible time window. In all four cases remote sensing results for wind speeds and directions agree relatively well with atmospheric sounding. Deviations are expected to be primarily due to spatial and temporal mismatch between sounding and remote sensing measurements. Another source of uncertainties are the limitations of the present remote sensing method in the determination of the actual direction of the wind, however, theses limitations could be eliminated in the future by using an all-sky camera and vertical lidar configuration.
Najdeno v: ključnih besedah
Povzetek najdenega: ...lidar and optical cameras), ground measurements of wind at Ajdovščina were performed. Wind speeds and...
Ključne besede: remote sensing, wind, atmosphere
Objavljeno: 13.10.2016; Ogledov: 1109; Prenosov: 21
.pdf Polno besedilo (9,48 MB)

4.
Lidar measurements of Bora wind effects on aerosol loading
Maruška Mole, Longlong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Francisco Ocaña, Benedikt Strajnar, Primož Škraba, Marko Vučković, William Willis, 2017, izvirni znanstveni članek

Opis: The Vipava valley in Slovenia is well known for the appearance of strong, gusty North-East Bora winds, which occur as a result of air flows over an adjacent orographic barrier. There are three revealing wind directions within the valley which were found to give rise to specific types of atmospheric structures. These structures were investigated using a Mie scattering lidar operating at 1064 nm, which provided high temporal and spatial resolution backscatter data on aerosols, which were used as tracers for atmospheric flows. Wind properties were monitored at the bottom of the valley and at the rim of the barrier using two ultrasonic anemometers. Twelve time periods between February and April 2015 were selected when lidar data was available. The periods were classified according to the wind speed and direction and investigated in terms of appearance of atmospheric structures. In two periods with strong or moderate Bora, periodic atmospheric structures in the lidar data were observed at heights above the mountain barrier and are believed to be Kelvin–Helmholtz waves, induced by wind shear. No temporal correlation was found between these structures and wind gusts at the ground level. The influence of the wind on the height of the planetary boundary layer was studied as well. In periods with low wind speeds, the vertical evolution of the planetary boundary layer was found to be governed by solar radiation and clouds. In periods with strong or moderate Bora wind, convection within the planetary boundary layer was found to be much weaker due to strong turbulence close to the ground, which inhibited mixing through the entire layer.
Najdeno v: ključnih besedah
Ključne besede: Downslope wind Lidar observations Kelvin–Helmholtz waves Bora
Objavljeno: 06.01.2017; Ogledov: 536; Prenosov: 0
.pdf Polno besedilo (3,02 MB)

5.
Study of the properties of air flow over orographic barrier
Maruška Mole, 2017, doktorska disertacija

Opis: Earth’s atmosphere is a complex system. All weather phenomena take place in its lowest layer, the troposphere, which is strongly influenced by human activities and the underlying surface orography. A good example of the influence the orography has on the behavior of air flows is the appearance of strong north-east downslope wind in Vipava valley, called Bora. Numerical models used to analyze flows in complex terrain need meteorological data both for setting the initial conditions and the verification of modeling results. Obtaining spatial distributions of meteorological observables can be challenging, especially in the case of strong winds, such as Bora, where traditional methods may be inadequate due to prohibitive wind speeds. In most cases, vertical properties of the atmosphere can be obtained using remote sensing techniques. Contrary to vertical profile measurements with traditional methods, remote sensing techniques do not require the measuring device to be placed within the flow and are therefore more appropriate for measurements in severe weather conditions such as strong winds. The aim of this thesis is a detailed analysis of wind and tropospheric structure properties in and above the Vipava valley in a variety of typical atmospheric conditions, including strong wind events. It employs a combination of high resolution wind and lidar data in addition to standard meteorological measurements. In Ajdovščina, there are four predominant wind directions, two of them directly connected to Bora. In the case of Bora, periodicity analysis of wind data from Ajdovščina yielded a range of possible wind gust periods between 1 and 7 minutes. The periods were not stable, with the periodogram less noisy for stable wind directions. Wavelike structures were found to be present in the troposphere in half of the investigated cases, regardless of the presence of Bora. In statically stable conditions, gravity waves propagated throughout the planetary boundary layer (PBL). In the case of Bora, the PBL experienced oscillations with periods between 1 and 2 minutes. A shear layer was present above the PBL, causing Kelvin-Helmholtz waves at its boundaries with periods ranging from 3 to 6 minutes. In some cases, periodic structures were observed above the shear layer as well, which were found to have longer periods than those within the PBL.
Najdeno v: ključnih besedah
Povzetek najdenega: ...is the appearance of strong north-east downslope wind in Vipava valley, called Bora. Numerical models...
Ključne besede: remote sensing, Vipava valley, wind properties, Bora, wind gusts, wind periodicity, tropospheric structures, Kelvin-Helmholtz waves
Objavljeno: 18.09.2017; Ogledov: 43; Prenosov: 4
.pdf Polno besedilo (45,11 MB)

Iskanje izvedeno v 0 sek.
Na vrh