Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 322
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
1.
Strategy for rural heritage regeneration in China : integrating community and government in governance: a case study of traditional villages in Luoning county :
Wendi Wang, 2024, doktorska disertacija

Opis: The Chinese countryside has long been associated with cultural continuity, albeit in contradictory ways. It has been marginalized for several decades, while all development efforts have focused on urbanization. However, as the tensions and paradoxes of modern urban life become increasingly obvious, the countryside is once again recognized as an enduring symbol of authentic national values. Chinese traditional cultural heritage is rooted in Chinese traditional villages. In fact, being built before the coming of the Republic of China, those villages nowadays still possess a great deal of very important material and immaterial forms of cultural heritage, as a historical record of the Chinese nation development. Through the examination and study of traditional villages in Luoning, and the perspective of theories of architectural conservation theory, community co-construction, and private-public partnership, the dissertation proposes a hybrid county governance model to maximize the stakeholder's functions roles, and operational procedures in the preservation and development of the traditional villages. Thus, through the integration of three stability perspectives—cultural, economic, and social —the dissertation provides the government's optimization strategy for heritage preservation. In the first case study, the governance of Zhangzhuang's traditional village is examined. The village's residents share responsibility for one another and are frequently connected by strong family ties and regular community organization in decision-making. Unfortunately, this thriving community-led government is insufficiently prepared to deal with the expanding tourism industry, it fails when it comes to overarching development objectives, and it lacks substantial experience in the preservation of historic structures. The Second case study investigates the government-led traditional types of villages. These are characterized by low public and community participation, and underdeveloped commodity economies, but being usually of outstanding importance, they result rich in traditional material and intangible cultural resources and have great potential for developing a tourism sector. Government-led efforts to reactivate the development of these villages have the advantages of credibility and authority, preferential policy formulation, and government short-term funding. However, these villages face severe problems in terms of community involvement, complementary market economies, and insufficient long-term government funding. This condition is investigated in the second case of the government's conception and promotion of the "Hou Shangzhuang Village Traditional Village Restoration" project. Despite some initial success, the project came to a standstill due to the competing interests of businesses, the government, and the community. The third case study looks into traditional villages where the primary development component is driven by businesses, creating conditions for the growth of a market economy. The analysis demonstrates that enterprise investments benefit from complementary capital input, resource integration, and effective management. However, the issue of uneven income and benefit distribution, as well as excessive consumption of public resources, pose a serious threat to both: the authenticity and integrity of cultural heritage, as well as the fair and sustainable development of local communities. This situation is examined in the case study of Qianhe Village, where the tourism industry has grown through multiple investment operations by private enterprises. The dissertation examines diverse hybrid governance models for each of these three different cultural, social, and economic heritage contexts. In specific it points to the role of government to efficiently design, validate, and promote responsive solutions for the resilience of cultural heritage of traditional villages in China.
Ključne besede: Heritage, Traditional Chinese village preservation, planning and management, Government, Governance, Participation, Community Co-construction
Objavljeno v RUNG: 11.03.2024; Ogledov: 91; Prenosov: 2
.pdf Celotno besedilo (9,17 MB)

2.
Morphogenesis of the Postojna Basin karst periphery : dissertation
Astrid Švara, 2023, doktorska disertacija

Opis: This thesis represents a karstological study on the drainage of the Postojna Basin. It focuses on a multidisciplinary approach, based on fieldwork, computer analyses and dating. The northern study area has the highest: doline density of 108 dolines/km2, number of contact karst features (i.e. 9), and number of collapse dolines (i.e. 19). It has three catchments. The Lokva cuts into the flysch ridges and sinks in the Predjama Cave System at the lowest point of the basin (i.e. 474 m a.s.l.). Between 37 selected caves, 14 were longer than 150 m. The Predjama Cave System was developed in 3 levels and the Postojna Cave System was developed in 2 levels. The vertical passages connecting them are deepest in the Predjama cave, where the vadose zone is up to 250 m deep. By the favourable ponor steepheads and 140 m deep vadose passages, the Hrušica Plateau shows a major uplift phase. The Postojna Cave System, Risovec blind valley and 17 collapse dolines indicate significant past hydrological changes. First, Nanoščica formed the Risovec blind valley, followed by Otoška jama, Tartarus, Male jame, and Artificial tunnel toward E/NE, forming the Vodni dol. At the same time, the ponor of Pivka shifted in the Postojnska jama (at present “Stara jama”), flowing towards N, forming Jeršanove doline. The successive subsidence of the erosional base and the Postojna karst uplift redirected the Nanoščica in Pivka. Now they sink into active parts of the Postojna cave at 511 m a.s.l. The eastern study area has the Unroofed cave Kriva dolina as a former ponor of Pivka. At present the area has springs and favourable (sub)vertical passages. The southern study area has the highest variety of contact karst features (i.e. 5). The Prestranški ravnik represents an aquifer with ponors and springs. It is separated from the Slavinski ravnik, by a flysch belt. In the southern study area, 10 caves were longer than 150 m among 49 selected caves. The Loza Cave System, a case study in Slavinski ravnik, is developed in 3 epiphreatic levels that followed two phases of tectonic uplift with a successive formation of diversion routes through 30-40 m deep vadose passages. The oldest upper cave level has sediments from at least the Gilbert Chron with CW rotations. U-Th dates from speleothems prove vadose speleogenesis before the cave ceiling denudation and collapse from 210 ka to 550 ka (≤1.2 Ma). The middle cave level has epiphreatic sediments at least in the Gauss Chron (i.e. 2.59-3.59 Ma) and reveals 35-38° CCW rotations. The allogenic sediments in the lower cave level show Brunhes and Matuyama Chrons (i.e. <0.78-2.58 Ma). We generally discussed ponor steepheads that develop on steepest slopes on the thrust/fault contact, while blind valleys and border depressions develop on normal stratigraphic contact with mildest slopes. The speleogenesis was mainly driven by relatively quick tectonic uplift, followed by vadose speleogenesis, with intermediate speleogenesis in the epiphreatic zone. Speleogenesis and contact karst features follow the subsidence of the water table, evidenced by cave levels, and active and relict features. Allogenic sediments are followed by speleothems as shift of caves between hydrological zones. The sequence of events repeated 2-3 times. The main local source of allogenic sediments is in the Postojna Basin, represented by the erosion of flysch rocks and alluvium. The mineralogical composition between catchments is similar with no significant change. The regional compressional-tectonic regime has significantly influenced the changes in the drainage of the Postojna Basin during the last 7 Ma, with different uplifts and drop of the karst water table. The major uplift was reflected by the change in the Nanoščica course from the Slavinski ravnik to the Postojna karst from S to N, presumably between 3.59 Ma and >1.77 Ma and represented the last important general shift in the drainage of the Postojna Basin.
Ključne besede: karst, contact karst, regional tectonic uplift, cave levels, shift from epiphreatic to vadose speleogenesis, Loza Cave System, Postojna drainage basin
Objavljeno v RUNG: 05.12.2023; Ogledov: 526; Prenosov: 40
.pdf Celotno besedilo (29,89 MB)

3.
Performance of copper - based catalysts for electrochemical CO2 reduction
Stefan Popović, 2023, doktorska disertacija

Opis: The industrial era has brought a never-ending problem to civilization through the emission of greenhouse gases (GHGs) while extracting energy from fossil fuels for a variety of processes. Among different GHGs, carbon dioxide (CO2) stood out as one of the most impactful and dangerous gases causing climatic disasters around the globe. However, CO2 as the abundant C1 building block, through the conversion pathways gives a plethora of opportunities to convert it into a wide range of commercial products and applications. The holistic approach among different conversion pathways is the electrochemical reduction of CO2 (eCO2R), ideally powered by renewable energy from intermittent sources such as wind and solar power. A silver bullet of the process is to find a catalyst that is active, selective, and stable. Copper has been recognized as the only monometallic catalyst that can produce products that require a transfer of >2e-. However, in recent years the increased awareness of its reconstructive nature under eCO2RR-relevant conditions multiplied the complexity of the parameters that can influence the reaction. Therefore overall thesis's approach to studying copper-based catalysts is based to understand the reconstructive aspect and the stability of Cu-based catalysts, and deeply comprehend their relationship with the activity/selectivity. Chapter 1 gives an introduction to the recent activities in the field of carbon capture, utilization and storage (CCSU) technologies, the fundaments of CO2 as a molecule, and its pathway toward state-of-the-art discoveries in the eCO2 R reaction. Afterward, the thesis focuses on the main experimental technique to produce nanostructured copper-based materials, namely, electrodeposition (Chapter 2). A big part of the thesis focuses on the establishment of an electrochemical setup for activity/selectivity measu rement. The setup consists of two parts: 1) construction of the custom-made gas-tight sandwich-type electrochemical cell and 2) optimization of the online gas and ex-situ liquid product detection. After the establishment of the reliable electrochemical setup, Chapter 3 focuses on electrochemically -grown Cu2O nanocubes catalyst and how the reconstructive nature induced by a particular electrochemical protocol influences on boost in activity/selectivity for methane production. The last part of the thesis consists contribution to the fundamental understanding of the degradation mechanisms and stability of Cu -based catalysts under eCO2RR conditions. A unique ex-situ approach, mirrored in identical location scanning electron microscopy (IL-SEM) method is employed to study electrodeposited spherical half-micron particles on the glassy carbon rotating disk electrode (GC-RDE). With this evidence, we could interpret the observed structural changes as two separate electrochemical processes occurring one after another, namely copper dissolution from pre-oxidized native nanoparticles and subsequent (electro -) redeposition of the dissolved copper species in a form of n ew smaller Cu fragments.
Ključne besede: electrocatalysts, electrochemical CO2 reduction, copper nanoparticles, IL-SEM, stability, degradation
Objavljeno v RUNG: 14.11.2023; Ogledov: 585; Prenosov: 11
.pdf Celotno besedilo (5,55 MB)

4.
Characterization of atmospheric properties over the Cherenkov Telescope Array at La Palma
Miha Živec, doktorska disertacija

Opis: Imaging Atmospheric Cherenkov Telescope (IACT) systems are used in high-energy astrophysics to detect and study gamma-ray sources in the universe. These telescopes measure properties of cosmic gamma rays using Cherenkov radiation emitted by secondary particles produced after interacting with the Earth’s atmosphere. Atmospheric monitoring is crucial for the proper operation of IACT systems. A number of remote sensing and in situ methods are used to understand and correct the effects of the atmosphere on the propagation of Cherenkov radiation from its origin to the telescope. Failure to do so greatly decreases IACT performance, particularly, their energy resolution and threshold. Lidar systems can be used to measure atmospheric optical depth profiles, which are essential for IACT calibration. The main aim of this thesis is to demonstrate that a prototype lidar for the north-ern site of the Cherenkov Telescope Array Observatory (CTAO), which is a next-generation IACT now under construction, has hardware and software capabilities that would lead to the construction of CTAO Raman lidar. Due to specific require-ments of the CTAO, a Raman lidar, which can provide better atmospheric parameter accuracy, will be used for the first time in an IACT system. In 2021-2022 the BRL was deployed to the future CTAO-North site at the Roque de los Muchachos observatory, La Palma, for testing in its actual operating conditions. During a year and a half long test period, it underwent a number of tests, including manual and remote operation under various environmental conditions. These included hot summers, cold winters, rain, snow, ice, and strong winds, but also some more exotic events, such as desert sand intrusions (Calima) and volcanic eruptions. The latter two are presented in this work as test cases for atmospheric characterization. Since the main goal of a CTAO lidar is the optical depth measurements, the BRL does not have the full set of features for aerosol characterization. While it can yield the ˚Angstr¨om exponent and lidar ratio, it does not provide depolarization informa-tion, which is one of the key components for aerosol typing. As the atmosphere at La Palma was found to be more complex than initially anticipated, we present the benefits of including depolarization capability by using a conceptually similar Raman lidar system specifically designed for aerosol characterization. We present the results of a campaign focused on the determination of bioaerosol capabilities to act as cloud condensation nuclei and ice-nucleating particles in mixed-phase clouds, where depo-larization information was used to determine the thermodynamic phase of the cloud.
Ključne besede: Cherenkov Telescope Array Observatory, Raman Lidar, atmospheric optical depth, aerosol characterization, Cumbre Vieja, Calima
Objavljeno v RUNG: 23.10.2023; Ogledov: 588; Prenosov: 21
.pdf Celotno besedilo (26,88 MB)

5.
THERMAL AND COMBINED PHOTO-THERMAL DRY REFORMING OF METHANE (DRM) OVER NANOSHAPED Ni/CeO2 CATALYSTS : DISSERTATION
Kristijan Lorber, 2023, doktorska disertacija

Opis: Dry reforming of methane (DRM) is an attractive reaction for converting the two major greenhouse gases CH4 and CO2 into the product syngas. H2 and CO as synthesis gas are important chemical feedstocks for the further production of valuable products as well as for the production of long-chain hydrocarbons by the Fisher-Tropsch process. High operating temperatures due to the endothermic nature of the DRM process and the occurrence of several side reactions such as Reverse Water Gas Shift, Methane Cracking and Boudoard reaction make the DRM process unattractive for industrial application. For the catalytic application of DRM in thermal mode (thermal energy drives the reaction), different CeO2 morphologies, namely nanorods, nanocubes, and nanospheres, were synthesized by a hydrothermal method. The best catalyst for DRM was found to be 2 wt. % Ni loaded in CeO2 rods morphology (2Ni-R). Characterization techniques (XRD, N2-physisorption, TEM, in-situ XANES/EXAFS TPR and CO2 TPD) were used to investigate the structural and redox properties of the catalysts. The mechanism of CO2 activation on reduced Ni/CeO2-x during DRM was proposed using DFT calculations and in-situ DRIFTS measurements combined with mass spectrometry. The 2Ni-R catalyst, which performed best in thermal DRM reaction, was studied under photo-thermal conditions where it was stimulated by both visible light and thermal energy. The catalytic activity was observed even at low (140 °C) temperatures, and the obtained CH4 and CO2 conversion, as well as H2/CO ratio exceeded thermodynamic limitations. XRD, TEM, and H2-physisorption techniques were used for structural characterization, while in-situ UV-Vis measurements were performed to study the optical properties of the catalyst. By using suitable long-pass filters and with the help of theoretical calculations, we were able to distinguish two photo mechanisms which contribute to photocatalytic activity under photo-thermal mode of the DRM reaction. Shorter wavelengths (< 450 nm) supported the charge transfer and generation mechanism in reduced CeO2-x, while longer wavelengths (> 450 nm) promoted near-field enhancement. However, under full spectrum of visible light (400 - 800 nm), the charge transfer and generation mechanism was dominant and led to 2-3 times higher CH4 activation rates compared to near-field enhancement.
Ključne besede: DRM, CeO2 nanoshapes, reaction mechanism, photocatalysis
Objavljeno v RUNG: 22.09.2023; Ogledov: 563; Prenosov: 29
.pdf Celotno besedilo (6,64 MB)

6.
Mikroplastika v kraških ekosistemih in njen vpliv na kakovost pitne vode
Lara Valentić, 2023, doktorska disertacija

Opis: Namen doktorske disertacije je bil opredeliti mikroplastiko (MP) ter izboljšati razumevanje o onesnaženju z MP v kraških ekosistemih in njenem vplivu na kakovost pitne vode, saj je to področje raziskav še v povojih. Obenem je bil namen doktorske disertacije določiti vire onesnaženja z MP in določiti transportne poti onesnaženja v kraških ekosistemih, da bi se preprečilo ali zmanjšalo onesnaževanje okolja, saj so kraški vodonosniki v sušnih območjih pogosto edini in najpomembnejši viri pitne vode za lokalno prebivalstvo. Izbrane so bile različne lokacije vzorčenja, s čimer smo zagotovili širok pregled nad različnimi ekosistemi (zrak, voda, deževnica in sediment). Izbrana sta bila dva od najpomembnejših kraških izvirov (Malni in Rižana, ki skupaj zagotavljata pitno vodo za celotno obalo z zaledjem in za več kot 20.000 lokalnih prebivalcev v občinah Postojna in Pivka). Nadalje so bila izbrana tri vzorčna mesta v Alpah kot referenčne točke z najbolj neokrnjenim okoljem v Sloveniji (Bohinjsko jezero, Blejsko jezero in ob Domu na Komni) ter v Lescah kot referenčni točki najbolj onesnažene lokacije, ki je hkrati tudi najbližje proučevanemu kraškemu ekosistemu. V okviru doktorske naloge so bile uporabljene različne metode vzorčenja, saj smo poskušali določiti protokol, ki je najboljši za posamezno kraško okolje. Tako so bili izviri in jezera vzorčeni z vzorčevalno mrežo, sedimenti so bili vzorčeni z uporabo sedimentnega stratigrafskega vzorčevalnika Uwitec, vzorčenje zraka je bilo izvedeno z uporabo sekvenčnega vzorčevalnika prahu Giano PMx, deževnica pa je bila vzorčena z 20-litrsko steklenico in lijem iz nerjavnega jekla. Vsi vzorci so bili filtrirani s steklenimi filtri, pregledani pod stereomikroskopom za določitev potencialnih MP-delcev in analizirani z mikroskopom Lumos II FTIR-ATR za določitev plastičnih polimerov. Kasneje smo uporabo posamezne metode vzorčenja in analize kritično ocenili. Pri vzorcih, ki so bili vzeti na izviru Malni, so rezultati pokazali, da je najvišja koncentracija MP v prvem vodnem pulzu po daljšem sušnem obdobju, medtem ko za Rižano iz dobljenih rezultatov ne moremo razbrati trendov transporta MP. Pri vzorcih deževnice in zraka je bilo pričakovano, da bodo imeli vzorci iz Lesc najvišje koncentracije MP-delcev zaradi bližine glavnih prometnih povezav: avtoceste proti Salzburgu (Avstrija) in Nemčiji, glavne železniške povezave in manjšega športnega letališča. Izkazalo se je, da so bile najvišje vrednosti MP v vzorcih deževnice na Komni, medtem ko so vsi vzorci zraka imeli zelo majhne količine MP-delcev. Vzorci sedimenta so bili odvzeti samo v Bohinjskem in Blejskem jezeru in niso vsebovali večjih količin MP-delcev, kar bi lahko bil vpliv hitrega transporta MP-delcev z vodnimi tokovi, zaradi česar delci nimajo časa za posedanje. Prav tako se celotna masa vode v obeh jezerih razmeroma hitro zamenja – v Bohinjskem jezeru se celotni volumen vode zamenja trikrat na leto, medtem ko se v Blejskem jezeru volumen vode zamenja vsako leto in pol. V splošnem je bilo mogoče sklepati na dva vira onesnaženja z MP: plastični čolni in kajaki lokalnih prebivalcev in turistov na obeh jezerih ter oblačila pomembno prispevajo k onesnaženju. To smo določili na podlagi najdenih plastičnih polimerov (v obeh jezerih) in na podlagi oblike delcev (največkrat smo našli različno debela vlakna in nitke). V vzorcih smo sicer našli veliko delcev, vendar je bila le majhna količina identificirana kot vir plastike, kar je tudi ena od ugank v tej raziskavi. Pripravili smo tudi konceptualni model za boljše razumevanje transportnih poti MP v kraškem okolju. V modelu smo združili rezultate iz doktorske disertacije in raziskave Valentić (2018). Še vedno je veliko neznank, vendar lahko z gotovostjo trdimo, da so viri onesnaženja zelo pomembni. Najvišje koncentracije MP so bile najdene v vodi iz ponvic turističnih jam in v deževnici na Komni. Koncentracije so visoke tudi v vzorcih sedimenta iz turističnih delov jam in iz alpskih jezer.
Ključne besede: mikroplastika (MP), Slovenija, alpski kras, dinarski kras, kraški vodonosnik, alpska jezera, izviri, deževnica, zrak, sedimenti, konceptualni model
Objavljeno v RUNG: 14.09.2023; Ogledov: 714; Prenosov: 26
.pdf Celotno besedilo (7,71 MB)

7.
RELATIVISTIC TIDAL DISRUPTIONS OF REALISTIC STARS BY SUPERMASSIVE BLACK HOLES
Taj Jankovič, 2023, doktorska disertacija

Opis: Stellar tidal disruption events (TDEs), where a star gets disrupted by strong tidal forces of a supermassive black hole (SMBH), offer a unique opportunity for studies of SMBHs and stellar dynamics in galactic nuclei and provide insights into accretion physics. Currently, there are ≈ 100 observed TDEs, however, this number is expected to increase significantly with the start of new wide-field optical surveys, e.g. with the Vera Rubin Observatory. We focus on hydrodynamic simulations of TDEs with the smoothed particle hydrodynamics code Phantom. To begin with, we simulate TDEs in a general relativistic and Newtonian description of an SMBH’s gravity. Stars, which are placed on parabolic orbits with different parameters β (to be defined here), are constructed with the stellar evolution code MESA and therefore have realistic stellar density profiles. We study the mass fallback rate of the debris Ṁ, a quantity often assumed to determine the TDE light curves, and its dependence on the β, stellar mass and age as well as the black hole’s spin and the choice of the gravity’s description. We find that relativistic disruptions at the same pericenter distance are stronger than disruptions in a Newtonian description of the SMBH’s gravity. We also determine the differences between Ṁ of realistic stars with various ages and masses. In addition, we characterize the effect of SMBH’s rotation on the Ṁ and find that it depends on the orientation of SMBH’s spin vector relative to the stellar orbital angular momentum. Encounters on prograde orbits result in narrower Ṁ curves with higher peak values, while the opposite occurs for retrograde orbits. Stellar disruption results in an elongated stream of gas that partly falls back to the pericenter. Due to apsidal precession, the returning stream may collide with itself, leading to a self-crossing shock that launches an outflow. If the black hole spins, this collision may additionally be affected by Lense-Thirring precession which can cause an offset between the two stream components. We study the impact of this effect on the outflow properties by carrying out local simulations of collisions between offset streams. As the offset increases, we find that the geometry of the outflow becomes less spherical and more collimated along the directions of the incoming streams, with less gas getting unbound by the interaction. However, even the most grazing collisions we consider significantly affect the trajectories of the colliding gas, likely promoting subsequent strong interactions near the black hole and rapid disc formation. We analytically compute the offset to stream width ratio, finding that even slowly spinning black holes can cause both strong and grazing collisions. We propose that the deviation from outflow sphericity may enhance the self-crossing shock luminosity due to a reduction of adiabatic losses, and cause significant variations of the efficiency at which X-ray radiation from the disc is reprocessed to the optical band depending on the viewing angle. These potentially observable features hold the promise of constraining the black hole spin from tidal disruption events.
Ključne besede: Computer modelling and simulation, hydrodynamics, black holes, infall
Objavljeno v RUNG: 29.08.2023; Ogledov: 585; Prenosov: 7
.pdf Celotno besedilo (16,29 MB)

8.
ULTRAFAST ELECTRON DYNAMICS IN CORRELATED SYSTEMS PROBED BY TIME-RESOLVED PHOTOEMISSION SPECTROSCOPY
Tanusree Saha, 2023, doktorska disertacija

Opis: Complex systems in condensed matter are characterized by strong coupling between different degrees of freedom constituting a solid. In materials described by many-body physics, these interactions may lead to the formation of new ground states such as excitonic insulators, Mott insulators, and charge and spin density waves. However, the inherent complexity in such materials poses a challenge to identifying the dominant interactions governing these phases using equilibrium studies. Owing to the distinct timescales associated with the elementary interactions, such complexities can be readily addressed in the non-equilibrium regime. Additionally, these materials might also show the emergence of new, metastable “hidden“ phases under non-equilibrium. The thesis investigates the ultrafast timescales of fundamental interactions in candidate systems by employing time-and angle-resolved photoemission spectroscopy in the femtosecond time domain. In the (supposed) excitonic insulator model system Ta2NiSe5, the timescale of band gap closure and the dependence of rise time (of the photoemission signal) on the photoexcitation strength point to a predominantly electronic origin of the band gap at the Fermi level. The charge density wave (CDW) - Mott insulator 1T-TaS2 undergoes photoinduced phase transition to two different phases. The initial one is a transient phase which resembles the systems’s high temperature equilibrium phase, followed by a long-lived “hidden“ phase with a different CDW amplitude and is primarily driven by the CDW lattice order. For the spin density wave system CaFe2As2 where multiple bands contribute in the formation of Fermi surfaces, selective photoexcitation was used to disentangle the role played by different electron orbitals. By varying the polarization of photoexcitation pulses, it is observed that dxz/dyz orbitals primarily contribute to the magnetic ordering while the dxy orbitals have dominant role in the structural order. The findings of the present study provide deeper perspectives on the underlying interactions in complex ground phases of matter, therefore, initiating further experimental and theoretical studies on such materials.
Ključne besede: complex systems, charge density wave, excitonic insulator, metastable phase, Mott insulator, non-equilibrium, spin density wave, timescales, time- and angle-resolved photoemission, ultrafast dynamics
Objavljeno v RUNG: 01.06.2023; Ogledov: 1213; Prenosov: 26
.pdf Celotno besedilo (13,34 MB)

9.
THERMOCHEMICAL CONVERSION OF MARINE LITTER INTO FUELS AND CHEMICALS
Gian Claudio Paolo Faussone, 2023, doktorska disertacija

Opis: Plastic waste is steadily polluting oceans and environments. Even when collected, it is still predominantly dumped or incinerated for energy recovery at the cost of CO2. However, no simple solution exists to deal with marine litter (ML). Overcoming limitations in collection, and in the environmentally, technically and economically acceptable use of the collected material, is of paramount importance. Chemical recycling can contribute to the transition towards a circular economy but the high variety and contamination of real waste remains the biggest challenge. In my research more than 100 kg of actual benthic ML from the North Adriatic Sea, including polyolefins packaging and polyamides fishing nets, were successfully processed “as-is” without pretreatment and converted into standardized marine gas oil (MGO) compliant with the ISO8217 via the pyrolysis and the distillation process; with 8 potential harmful emissions linked to the pyrolysis process monitored and curbed to safe levels. Approximately 45 wt% yield of raw pyrolysis oil (RPO) was obtained of which 50% (v/v) being MGO. RPO and its distillates were chemically characterized via GC-MS. For all samples, more than 30% of the detected compounds were identified. 2,4-dimethyl-1-heptene, a marker of PP pyrolysis, is the most represented peak in the chemical signature of all the marine litter samples, and it differentiates commercial and pyrolysis marine gasoil. Besides, I studied the detailed composition and the steam cracking performance of distilled pyrolysis oil fractions in the naphtha-range of ML and mixed municipal plastic waste (MPW) considered unsuitable for mechanical recycling. Advanced analytical techniques including comprehensive two-dimensional gas chromatography (GC × GC) coupled with various detectors and inductively coupled plasma – mass spectrometry (ICP-MS) was applied to characterize the feedstocks and to understand how their properties affect the steam cracking performance. Both waste-derived naphtha fractions were rich in olefins and aromatics (~70% in MPW naphtha and ~51% in ML naphtha) next to traces of nitrogen, oxygen, chlorine and metals. ICP-MS analyses showed that sodium, potassium, silicon and iron were the most crucial metals that should be removed in further upgrading steps. Steam cracking of the waste-derived naphtha fractions resulted in lower light olefin yields compared to fossil naphtha used as benchmark, due to secondary reactions of aromatics and olefins. Coke formation of ML naphtha was slightly increased compared to fossil naphtha (~50%), while that of MPW naphtha was more than ~180% higher. It was concluded that mild upgrading of the waste-derived naphtha fractions or dilution with fossil feedstocks is sufficient to provide feedstocks suitable for industrial steam cracking. Waste plastics oil (WPO) obtained from a relatively large-scale batch rotary kiln pyrolysis reactor was collected and stored for 60 months in dark at 10 °C, periodically thoroughly characterized and finally tested as the drop-in fuel in internal combustion engine. It was evaluated by investigation of combustion process and emission formation phenomena under a wide range of operating parameters. The results were compared with those obtained with diesel fuel at the same injection and gas path parameters to provide a comprehensive basis for further development of control strategies. Finally, the solid residue from the pyrolysis process was evaluated for material recovery or safe disposal, thus closing the mass balance of the whole process. Due to the great contamination of the original feedstock, stabilization of solid residue is required to attain not hazardous waste criteria, but once stabilized with Portland concrete, it could even be employed as construction material, therefore transforming a problem into an opportunity.
Ključne besede: marine litter, marine fuel, pyrolysis, circular economy, environmental impact, chemical recycling, steam-cracking, pyrolysis char
Objavljeno v RUNG: 12.05.2023; Ogledov: 1056; Prenosov: 14
.pdf Celotno besedilo (14,33 MB)

10.
Efficiency of the grid energy storage technology based on iron-chloride material cycle
Uroš Luin, doktorska disertacija

Opis: Future high-capacity energy storage technologies are crucial for a highly renewable energy mix, and their mass deployment must rely on cheap and abundant materials, such as iron chloride. The iron chloride electrochemical cycle (ICEC), suitable for long-term grid energy storage using a redox potential change of Fe2+/Fe, involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial maximizing the energy efficiency of the electrolysis process. The thesis presents a study of the influence of electrolysis parameters on energy efficiency, performed in an industrial-type electrolyzer system. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency as a function of current density. The contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ±3 % was achieved using 2.5 mol dm-3 FeCl2 solution at 70 °C and a current density of 0.1 kA m-2. In terms of the energy input per Fe mass, this means 1.88 Wh g-1. The limiting energy input per mass of the Fe-deposit, calculated by extrapolating experimental results toward Eocell potential, was found to be 1.76 Wh g-1. For optimal long-duration electrolysis efficiency and performance, the optimal catholyte concentration range is 1-2 mol dm-3 FeCl2. We performed in situ X-ray absorption spectroscopy experimental studies to validate theoretical conclusions from literature related to the population and structure of Fe-species in the FeCl2 (aq) solution at different concentrations (1 - 4 mol dm-3) and temperatures (25 - 80 °C). This revealed that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five H2O at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical H2O is substituted by a Cl ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing state-of-the-art conductivity models. An additional steric impediment of the electrolytic cell is caused by the predominant neutral species present in the catholyte solution at high concentration. This correlates with poor electrolysis performance at a very high catholyte concentration (4 mol dm-3 FeCl2), especially at high current densities (> 1 kA m-2). The neutral Fe[Cl2(H2O)4]0 complex negatively affects the anion exchange membrane ion (Cl-) transfer and lowers the concentration of electroactive species (Fe[Cl(H2O)5]+) at the cathode surface. The kinetics of hydrogen evolution from the reaction between Fe powder and HCl acid was studied under the first-order reaction condition. The activation energy was determined to be 55.3 kJ mol-1.
Ključne besede: ICEC, Power-to-Solid, energy storage, hydrogen, ferrous chloride, electrolysis, Fe deposition, efficiency, XAS, structure and population, ionic species, ion association, conductivity
Objavljeno v RUNG: 18.04.2023; Ogledov: 1229; Prenosov: 24  (1 glas)
.pdf Celotno besedilo (4,34 MB)

Iskanje izvedeno v 0.26 sek.
Na vrh