Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


4351 - 4360 / 6047
First pagePrevious page432433434435436437438439440441Next pageLast page
4351.
Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4
Tanja Petrushevska, Rahman Amanullah, Mattia Bulla, Markus Kromer, Raphael Ferretti, Ariel Goobar, Semeli Papadogiannakis, 2017, original scientific article

Abstract: Context. The light from distant supernovae (SNe ) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at −5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at λ ∼ 3500 Å, which is present only to a lesser extent in individual low- and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.
Keywords: supernovae: individual: PS1-10afx – gravitational lensing: strong – supernovae: general
Published in RUNG: 23.01.2018; Views: 3615; Downloads: 0
This document has many files! More...

4352.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
Ariel Goobar, Rahman Amanullah, S.R. Kulkarni, Tanja Petrushevska, 2017, original scientific article

Abstract: We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu, at redshift z = 0.409. This phenomenon could be iden- tified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.300 from the center of the foreground galaxy. The observations probe a physical scale of ⇠1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large mag- nification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.
Keywords: lensed supernova, strong lensing, galaxy lens, multiply-lensed supernova
Published in RUNG: 23.01.2018; Views: 3300; Downloads: 0
This document has many files! More...

4353.
High-redshift supernova rates measured with the gravitational telescope A 1689
Tanja Petrushevska, R. Amanullah, Ariel Goobar, S. Fabbro, Joel Johansson, Tor Kjellsson, Chris Lidman, K. Paech, Johan Richard, H. Dahle, Raphael Ferretti, J.P. Kneib, M. Limousin, Jakob Nordin, V. Stanishev, 2016, original scientific article

Abstract: Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 < z < 1.703 and magnifications in the range ∆m = −0.31 to −1.58 mag, as calculated from lensing models in the literature. Owing to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high redshifts, z ∼ 3, albeit for a limited region of space. We present a study of the core-collapse supernova rates for 0.4 ≤ z < 2.9, and find good agreement with previous estimates and predictions from star formation history. During our survey, we also discovered two Type Ia supernovae in A 1689 cluster members, which allowed us to determine the cluster Ia rate to be 0.14+0.19 −0.09 ± 0.01 SNuB h 2 (SNuB ≡ 10−12 SNe L −1 ,B yr−1), where the error bars indicate 1σ confidence intervals, statistical and systematic, respectively. The cluster rate normalized by the stellar mass is 0.10+0.13 −0.06 ± 0.02 in SNuM h 2 (SNuM ≡ 10−12 SNe M−1 yr−1). Furthermore, we explore the optimal future survey for improving the core-collapse supernova rate measurements at z & 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions. Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe.
Keywords: supernovae: general – gravitational lensing: strong – galaxies: star formation – galaxies: clusters: individual: A 1689 – techniques: photometric
Published in RUNG: 23.01.2018; Views: 3634; Downloads: 0
This document has many files! More...

4354.
VizieR Online Data Catalog: A 1689 HAWK-I J-band image (Petrushevska+, 2016)
Tanja Petrushevska, complete scientific database of research data

Abstract: The NIR data were obtained with the High Acuity Wide field K-band imager mounted on the VLT (Programmes ID 082.A-0431, 0.83.A-0398, 090.A-0492, 091.A-0108, P.I. Goobar). The HAWK-I has an array of four 2048x2048 HgCdTe detectors covering a total area of 7.5'x7.5' with a sampling of 0.106"/pix per pixel. The chips are separated by a 15" gap.
Keywords: Clusters: galaxy, Infrared sources
Published in RUNG: 23.01.2018; Views: 3638; Downloads: 0
This document has many files! More...

4355.
VizieR Online Data Catalog: Photometry of SN 2013gh and iPTF13dge (Ferretti+, 2016)
Raphael Ferretti, Tanja Petrushevska, complete scientific database of research data

Abstract: Measured photometry of type Ia supernovae 2013gh and iPTF13dge are presented. Furthermore, the effective light-curve-width-corrected phase and the natural magnitude in specified filters have been computed. Thereby, the corresponding Galactic absorption (Ax_MW) and the filter corrections (Kx) to the corresponding rest-frame filter for SN 2011fe as described by Amanullah et al. (2015MNRAS.453.3300A) are presented. The corrected magnitude can be obtained as X-AXMW-KX. All corrections have been calculated after the SN 2011fe template has been reddened with the best-fit Fitzpatrick (1999PASP..111...63F) law, for each SN. Furthermore, the V magnitude and corrections for each phase phase are included. The V magnitude was either measured (M) or calculated (D) using the SNooPy model. The V magnitude is only shown for data points used in the colour analysis, with phases between -10 and +35-days. The corrected colour can be obtained as (X-AXMW-KX)-(V-AVMW-KV) and can be compared with the corresponding colour of SN 2011fe in order to study the reddening laws of the SNe.
Keywords: Supernovae, Photometry: UBV, Photometry: ugriz, Photometry: ultraviolet
Published in RUNG: 23.01.2018; Views: 3641; Downloads: 0
This document has many files! More...

4356.
SEARCH FOR LENSED SUPERNOVAE BY MASSIVE GALAXY CLUSTERS WITH THE 2.5m NORDIC OPTICAL TELESCOPE
Tanja Petrushevska, 2013, published scientific conference contribution

Abstract: We shortly present here the ongoing project by the Stockholm supernova group about the search of high-z supernovae with the ALFOSC camera at the Nordic Optical Telescope by using galaxy clusters as gravitational telescope.
Keywords: gravitational telescopes, Abell 1689, galaxy clusters, telescopes, lensed supernovae, strong lensing
Published in RUNG: 23.01.2018; Views: 3696; Downloads: 0
This document has many files! More...

4357.
Time-varying sodium absorption in the Type Ia supernova 2013gh
Raphael Ferretti, R. Amanullah, Ariel Goobar, Joel Johansson, Tanja Petrushevska, 2016, original scientific article

Abstract: Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorptionline variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.
Keywords: supernovae: general – supernovae: individual: SN 2013gh – dust, extinction – circumstellar matter – supernovae: individual: iPTF 13dge
Published in RUNG: 23.01.2018; Views: 3475; Downloads: 0
This document has many files! More...

4358.
Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm
Rahman Amanullah, Tanja Petrushevska, 2015, original scientific article

Abstract: We present ultraviolet (UV) observations of six nearby Type Ia supernovae (SNe Ia) obtained with the Hubble Space Telescope, three of which were also observed in the near-IR (NIR) with Wide-Field Camera 3. UV observations with the Swift satellite, as well as ground-based optical and NIR data provide complementary information. The combined data set covers the wavelength range 0.2–2 μm. By also including archival data of SN 2014J, we analyse a sample spanning observed colour excesses up to E(B − V) = 1.4 mag. We study the wavelength-dependent extinction of each individual SN and find a diversity of reddening laws when characterized by the total-to-selective extinction RV. In particular, we note that for the two SNe with E(B − V) ≳ 1 mag, for which the colour excess is dominated by dust extinction, we find RV = 1.4 ± 0.1 and RV = 2.8 ± 0.1. Adding UV photometry reduces the uncertainty of fitted RV by ∼50 per cent allowing us to also measure RV of individual low-extinction objects which point to a similar diversity, currently not accounted for in the analyses when SNe Ia are used for studying the expansion history of the Universe.
Keywords: circumstellar matter, supernovae: general, supernovae: individual: SNe 2012cg, supernovae: individual: 2012cu, dust, extinction
Published in RUNG: 23.01.2018; Views: 3457; Downloads: 0
This document has many files! More...

4359.
Supernova spectra below strong circumstellar interaction
Giorgos Leloudas, E.Y. Hsiao, Joel Johansson, Keichi Maeda, T.J. Moriya, Jakob Nordin, Tanja Petrushevska, J. M. Silverman, Jesper Sollerman, M.D. Stritzinger, Francesco Taddia, D. Xu, 2015, original scientific article

Abstract: We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a blackbody continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as “SNe IInS” to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ∼ 0.2−0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range −19.5 > M > −21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = −20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the Hα profiles vary with fV . SNe IIn fainter than M = −17.2 are unable to mask SNe IIP brighter than M = −15. A more advanced simulation, including radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement with real data.
Keywords: supernovae
Published in RUNG: 22.01.2018; Views: 3523; Downloads: 0
This document has many files! More...

4360.
THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE
Rahman Amanullah, Ariel Goobar, Joel Johansson, D.P.K. Banerjee, V. Venkataraman, V. Joshi, N.M. Ashok, Yi Cao, Mansi Kasliwal, S.R. Kulkarni, P.E. Nugent, Tanja Petrushevska, V. Stanishev, 2014, original scientific article

Abstract: The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2–2μm. A total-to-selective extinction, RV 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields RV = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatible with a power-law extinction, Aλ/AV = (λ/λV ) p as expected from multiple scattering of light, with p = −2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.
Keywords: dust, extinction – galaxies: individual (Messier 82) – supernovae: individual SN2014J
Published in RUNG: 22.01.2018; Views: 3405; Downloads: 0
This document has many files! More...

Search done in 0.48 sec.
Back to top