Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


31 - 40 / 114
First pagePrevious page12345678910Next pageLast page
Temporal and spatial patterns of zinc and iron accumulation during barley (Hordeum vulgare L.) grain development. Journal of agricultural and food chemistry.
Amelie Detterbeck, Paula Pongrac, Daniel Persson, Iztok Arčon, Primož Pelicon, Primož Vaupetič, Mitja Kelemen, Søren Husted, Katarina Vogel-Mikuš, Stephan Clemens, Jan Kofod Shjoerring, 2020, original scientific article

Abstract: Breeding and engineering of biofortified crops will benefit from a better understanding of bottlenecks controlling micronutrient loading within the seeds. However, few studies have addressed the changes in micronutrient concentrations, localization, and speciation occurring over time. Therefore, we studied spatial patterns of zinc and iron accumulation during grain development in two barley lines with contrasting grain zinc concentrations. Microparticle-induced-X-ray emission and laser ablationinductively coupled plasma mass spectrometry were used to determine tissue-specific accumulation of zinc, iron, phosphorus, and sulfur. Differences in zinc accumulation between the lines were most evident in the endosperm and aleurone. A gradual decrease in zinc concentrations from the aleurone to the underlying endosperm was observed, while iron and phosphorus concentrations decreased sharply. Iron co-localized with phosphorus in the aleurone, whereas zinc co-localized with sulfur in the sub-aleurone. We hypothesize that differences in grain zinc are largely explained by the endosperm storage capacity. Engineering attempts should be targeted accordingly.
Found in: osebi
Keywords: barley (Hordeum vulgare L.), biofortification, grain development, grain loading, LA-ICP-MS, μ-PIXE
Published: 20.10.2020; Views: 829; Downloads: 0
.pdf Fulltext (4,76 MB)

Spectroscopic insights into the electrochemical mechanism of rechargeable calcium/sulfur batteries
Giuliana Aquilanti, Jan Bitenc, Romain Berthelot, Antonio Scafuri, Alen Vižintin, Klemen Pirnat, Lorenzo Stievano, Robert Dominko, Iztok Arčon, Rémi Dedryvère, Dominique Foix, 13, original scientific article

Abstract: Calcium batteries represent a promising alternative to lithium metal systems. The combination of the low redox potential and low cost and the energy-dense calcium anode (2073 mAh/cm3, similar to 2044 mAh/cm3 for Li) with appropriate low-cost cathode materials such as sulfur could produce a game-changing technology in several fields of applications. In this work, we present the reversible activity of a proof-of-concept Ca/S battery at room temperature, characterized by a surprising medium-term cycling stability with low polarization, promoted by the use of a simple positive electrode made of sulfur supported on an activated carbon cloth scaffold, and a state-of-the-art fluorinated alkoxyborate-based electrolyte. Insights into the electrochemical mechanism governing the chemistry of the Ca/S system were obtained for the first time by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The mechanism implies the formation of different types of soluble polysulfide species during both charge and discharge at room temperature, and the formation of solid CaS at the end of discharge. The reversible electrochemical activity is proven by the reformation of elemental sulfur at the end of the following charge. These promising results open the way to the comprehension of emerging Ca/S systems, which may represent a valid alternative to Mg/S and Li/S batteries.
Found in: osebi
Keywords: Calcium/Sulfur Batteries EXAFS, XANES
Published: 17.10.2020; Views: 800; Downloads: 0
.pdf Fulltext (3,74 MB)

Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent
Bojana Obradovic, Nataša Novak Tušar, Iztok Arčon, Janez Kovač, Mina Jovanovic, Nevenka Rajić, 2016, original scientific article

Abstract: In this study the uptake capacity of Mn(II) ions by zeolite A beads was investigated for different initial Mn concentration (100e400 mg Mn dm^-3) in batch mode at 25e55 C. The obtained adsorption capacity varying from 30 to 50 mg Mn g^-1 demonstrated a high affinity of zeolite A towards Mn(II) present in solutions. Kinetic studies indicated the intra-particle diffusion as the rate limiting step up to 45 C with apparent diffusivities in the range (1.2e2.0) x 10^-13 m2 s^-1 and the activation energy of 21.9 kJ mol^-1, which implies strong interactions between the zeolite A and Mn ions. At 55 C ion-exchange became the rate limiting step. The adsorption isotherms were studied at 25 C showing that the Mn adsorption is the best described by the Langmuir model suggesting a homogenous zeolite surface. XPS analysis of the Mnloaded beads showed that there is no surface accumulation of Mn but an almost uniform Mn distribution inside zeolite A, whereas XANES and EXAFS suggested that the adsorption of Mn(II) was followed by the Mn(II) oxidation and oxide formation. Regeneration of the spent zeolite was examined in 8 adsorption/desorption cycles by a chelating Na2EDTA in a fluidized column. It has been found that zeolite A beads could be reused for at least 4 cycles with satisfactory Mn(II) adsorption efficiencies of about 70%.
Found in: osebi
Keywords: Zeolite A Manganese Adsorption kinetics EXAFS/XANES XPS
Published: 01.04.2016; Views: 3125; Downloads: 0
.pdf Fulltext (1,27 MB)

Atomic effects in EXAFS structural analysis of redox I[sup]-/I[sup]-[sub]3 solid state electrolites
Iztok Arčon, Jana Padežnik Gomilšek, Alojz Kodre, 2006, original scientific article

Abstract: Atomic effects in EXAFS structural analysis of redox Isup-/Isup-sub3 solid state electrolites
Found in: osebi
Published: 17.05.2016; Views: 2430; Downloads: 12
URL Fulltext (0,00 KB)

Specific EXAFS tools in analysis of MoSI nanowires
Anton Meden, Alojz Kodre, Iztok Arčon, Jana Padežnik Gomilšek, Dragan Mihailović, 2006, original scientific article

Abstract: Specific EXAFS tools in analysis of MoSI nanowires
Found in: osebi
Keywords: EXAFS, MoSI, nanocevke, struktura
Published: 17.05.2016; Views: 2498; Downloads: 13
URL Fulltext (0,00 KB)

XAS and micro-XRF analysis of mono and bi-metallic exopolysaccharide (FePd-EPS) bio-generated by K. oxytoca
Franco Baldi, Katarina Vogel-Mikuš, Michele Gallo, Oreste Piccolo, Stefano Paganelli, Iztok Arčon, 2016, published scientific conference contribution abstract

Abstract: Bacteria Klebsiella oxytoca (DSM 29614) secret a specific exopolysaccharide (EPS) in the presence of Fe(III)-citrate, as sole carbon and energy source, and produces after 7 days an iron gel precipitate (Fe-EPS) [1]. In the presence of palladium or other metal species, the culture of K. oxytoca can produce other mono or bimetal species (Pd-EPS, FePd-EPS) [2]. These bio-materials may be used as green biogenerated catalysts or for other biotechnological purposes. In this work we present the analysis of the morphology and the chemical state of the metals in mono and bi-metallic (Fe-EPS, Pd-EPS, FePd-EPS) complexes, by a combination of micro X-ray fluorescence, X-ray absorption spectroscopy methods (XANES and EXAFS), and transmission electron microscopy. The results show that iron in monometallic Fe-EPS and bimetalic FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+ in the structure, as a mixture of different nano-crystalline iron oxides and hydroxides. Palladium on the other hand is found as Pd(0) in the form of metallic nanoparticles with fcc structure in both, bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. Access to the SR facilities at ESRF (beamline ID21, project LS-2225), DESY (beamline C) Hamburg (project I-20110511 EC) and ELETTRA (beamline XAFS, project 20115112) is acknowledged.
Found in: osebi
Keywords: Klebsiella oxytoca, Fe, Pd, XANES, EXAFS, exopolysaccharide, FePd-EPS
Published: 28.06.2016; Views: 3648; Downloads: 0
.pdf Fulltext (388,27 KB)

Study of Li-S batteries by S K-edge RIXS spectroscopy
Robert Dominko, Iztok Arčon, Marko Petrič, Klemen Bučar, Matjaž Žitnik, Matjaž Kavčič, Alen Vižintin, 2016, published scientific conference contribution abstract

Abstract: Li-S batteries are considered as one of the most promising candidates for future batteries in applications where high energy density is required [1]. Despite that the general principle of operation is known for a long time [2], the lack of detailed understanding of relevant operation mechanisms has so far prevented their extensive use. A Li-S battery is composed of a lithium metal anode and a sulfur based cathode, separated by a porous separator wetted with electrolyte. During the battery cycle the reduction and oxidation of S to Li2S and back proceeds through a complicated equilibrium mixture of compounds that are typically dissolved in the electrolyte in the form of long and short chain polysulfides. In order to improve our understanding of polysulfide formation and its interactions within electrode, which are essential to achieve the long term cycling stability, development and application of new analytical tools is required. In this work sulfur K-edge resonant X-ray emission (RXES) measurements were performed on the Li-S battery in operando mode. The experiment was performed at the ID26 beamline at ESRF using the Johansson type tender x-ray emission spectrometer [3]. Full K-L RIXS maps were recorded on a set of chemically prepared Li2Sx sample standards characterized by different Li:S stoichiometric ratio, followed by the operando measurements on Li-S battery. Using the spectra recorded on Li2Sx standards two excitation energies were chosen and RXES spectra from the back of the battery cathode were sequentially acquired during one discharge cycle (C20). The relative amounts of each sulfur compound in the cathode during the discharge cycle were determined from the linear combination fit using measured reference standard spectra. Because of resonant excitation conditions the sensitivity for the polysulfide detection was significantly enhanced. Our work sets up S K-edge RIXS spectroscopy as an important analytical tool to study the mechanism of Li-polysulfide formation in the cathode and their interaction with the host matrix and electrolyte.
Found in: osebi
Keywords: RIXS, RXES, Li-S battery, operando, Sulphur K-edge XANES, Lithium polysulphides, Li2S
Published: 28.06.2016; Views: 3611; Downloads: 0
.pdf Fulltext (60,50 KB)

Search done in 0 sec.
Back to top