Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


31 - 40 / 101
First pagePrevious page12345678910Next pageLast page
31.
Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent
Bojana Obradovic, Nataša Novak Tušar, Iztok Arčon, Janez Kovač, Mina Jovanovic, Nevenka Rajić, 2016, original scientific article

Abstract: In this study the uptake capacity of Mn(II) ions by zeolite A beads was investigated for different initial Mn concentration (100e400 mg Mn dm^-3) in batch mode at 25e55 C. The obtained adsorption capacity varying from 30 to 50 mg Mn g^-1 demonstrated a high affinity of zeolite A towards Mn(II) present in solutions. Kinetic studies indicated the intra-particle diffusion as the rate limiting step up to 45 C with apparent diffusivities in the range (1.2e2.0) x 10^-13 m2 s^-1 and the activation energy of 21.9 kJ mol^-1, which implies strong interactions between the zeolite A and Mn ions. At 55 C ion-exchange became the rate limiting step. The adsorption isotherms were studied at 25 C showing that the Mn adsorption is the best described by the Langmuir model suggesting a homogenous zeolite surface. XPS analysis of the Mnloaded beads showed that there is no surface accumulation of Mn but an almost uniform Mn distribution inside zeolite A, whereas XANES and EXAFS suggested that the adsorption of Mn(II) was followed by the Mn(II) oxidation and oxide formation. Regeneration of the spent zeolite was examined in 8 adsorption/desorption cycles by a chelating Na2EDTA in a fluidized column. It has been found that zeolite A beads could be reused for at least 4 cycles with satisfactory Mn(II) adsorption efficiencies of about 70%.
Found in: osebi
Keywords: Zeolite A Manganese Adsorption kinetics EXAFS/XANES XPS
Published: 01.04.2016; Views: 2356; Downloads: 0
.pdf Fulltext (1,27 MB)

32.
Atomic effects in EXAFS structural analysis of redox I[sup]-/I[sup]-[sub]3 solid state electrolites
Iztok Arčon, Jana Padežnik Gomilšek, Alojz Kodre, 2006, original scientific article

Abstract: Atomic effects in EXAFS structural analysis of redox Isup-/Isup-sub3 solid state electrolites
Found in: osebi
Published: 17.05.2016; Views: 1826; Downloads: 9
URL Fulltext (0,00 KB)

33.
Specific EXAFS tools in analysis of MoSI nanowires
Anton Meden, Alojz Kodre, Iztok Arčon, Jana Padežnik Gomilšek, Dragan Mihailović, 2006, original scientific article

Abstract: Specific EXAFS tools in analysis of MoSI nanowires
Found in: osebi
Keywords: EXAFS, MoSI, nanocevke, struktura
Published: 17.05.2016; Views: 1834; Downloads: 10
URL Fulltext (0,00 KB)

34.
35.
36.
XAS and micro-XRF analysis of mono and bi-metallic exopolysaccharide (FePd-EPS) bio-generated by K. oxytoca
Franco Baldi, Katarina Vogel-Mikuš, Michele Gallo, Oreste Piccolo, Stefano Paganelli, Iztok Arčon, 2016, published scientific conference contribution abstract

Abstract: Bacteria Klebsiella oxytoca (DSM 29614) secret a specific exopolysaccharide (EPS) in the presence of Fe(III)-citrate, as sole carbon and energy source, and produces after 7 days an iron gel precipitate (Fe-EPS) [1]. In the presence of palladium or other metal species, the culture of K. oxytoca can produce other mono or bimetal species (Pd-EPS, FePd-EPS) [2]. These bio-materials may be used as green biogenerated catalysts or for other biotechnological purposes. In this work we present the analysis of the morphology and the chemical state of the metals in mono and bi-metallic (Fe-EPS, Pd-EPS, FePd-EPS) complexes, by a combination of micro X-ray fluorescence, X-ray absorption spectroscopy methods (XANES and EXAFS), and transmission electron microscopy. The results show that iron in monometallic Fe-EPS and bimetalic FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+ in the structure, as a mixture of different nano-crystalline iron oxides and hydroxides. Palladium on the other hand is found as Pd(0) in the form of metallic nanoparticles with fcc structure in both, bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. Access to the SR facilities at ESRF (beamline ID21, project LS-2225), DESY (beamline C) Hamburg (project I-20110511 EC) and ELETTRA (beamline XAFS, project 20115112) is acknowledged.
Found in: osebi
Keywords: Klebsiella oxytoca, Fe, Pd, XANES, EXAFS, exopolysaccharide, FePd-EPS
Published: 28.06.2016; Views: 2877; Downloads: 0
.pdf Fulltext (388,27 KB)

37.
Study of Li-S batteries by S K-edge RIXS spectroscopy
Robert Dominko, Iztok Arčon, Marko Petrič, Klemen Bučar, Matjaž Žitnik, Matjaž Kavčič, Alen Vižintin, 2016, published scientific conference contribution abstract

Abstract: Li-S batteries are considered as one of the most promising candidates for future batteries in applications where high energy density is required [1]. Despite that the general principle of operation is known for a long time [2], the lack of detailed understanding of relevant operation mechanisms has so far prevented their extensive use. A Li-S battery is composed of a lithium metal anode and a sulfur based cathode, separated by a porous separator wetted with electrolyte. During the battery cycle the reduction and oxidation of S to Li2S and back proceeds through a complicated equilibrium mixture of compounds that are typically dissolved in the electrolyte in the form of long and short chain polysulfides. In order to improve our understanding of polysulfide formation and its interactions within electrode, which are essential to achieve the long term cycling stability, development and application of new analytical tools is required. In this work sulfur K-edge resonant X-ray emission (RXES) measurements were performed on the Li-S battery in operando mode. The experiment was performed at the ID26 beamline at ESRF using the Johansson type tender x-ray emission spectrometer [3]. Full K-L RIXS maps were recorded on a set of chemically prepared Li2Sx sample standards characterized by different Li:S stoichiometric ratio, followed by the operando measurements on Li-S battery. Using the spectra recorded on Li2Sx standards two excitation energies were chosen and RXES spectra from the back of the battery cathode were sequentially acquired during one discharge cycle (C20). The relative amounts of each sulfur compound in the cathode during the discharge cycle were determined from the linear combination fit using measured reference standard spectra. Because of resonant excitation conditions the sensitivity for the polysulfide detection was significantly enhanced. Our work sets up S K-edge RIXS spectroscopy as an important analytical tool to study the mechanism of Li-polysulfide formation in the cathode and their interaction with the host matrix and electrolyte.
Found in: osebi
Keywords: RIXS, RXES, Li-S battery, operando, Sulphur K-edge XANES, Lithium polysulphides, Li2S
Published: 28.06.2016; Views: 2876; Downloads: 0
.pdf Fulltext (60,50 KB)

38.
Correlations between photocatalytic activity and chemical structure in copper doped TiO2-SiO2 with surface/incorporated Cu2+ sites
Tihana Čižmar, Iztok Arčon, Urška Lavrenčič Štangar, 2016, published scientific conference contribution abstract

Abstract: Sol−gel method was used to synthesize copper doped TiO2-SiO2 with varied dopant concentrations using tetraisopropoxide (TTIP) and copper acetlyacetonate (CuAcAc) as titania and copper sources. Structural information of Cu cation incorporation and its chemical state in the coatings are determined with Cu K-edge EXAFS and XANES analysis. The correlations between chemical state of the Cu dopant and the photocatalytic properties of the new active coatings are discussed.
Found in: osebi
Keywords: dip-coating, titanium dioxide, metal doping, Cu K-edge XANES, photocatalytic activity
Published: 07.07.2016; Views: 2522; Downloads: 0

39.
Photocatalytic Activity of Zirconium- and Manganese- Codoped Titania in Aqueous Media: The Role of the Metal Dopant and its Incorporation Site
Nataša Novak Tušar, Iztok Arčon, O. L. Pliekhov, Urška Lavrenčič Štangar, 2016, original scientific article

Abstract: The development of efficient TiO2-based photocatalysts for water treatment is mainly performed by doping with transition metals or by establishing junctions between different phases, metal–semiconductor or semiconductor–semiconductor. We present, for the first time, the synthesis of Zr- and Mn-modified TiO2 by a redesigned sol–gel technique that allows the formation of heterometallic bridges on the TiO2 surface. Cations of the doping metals are located in the pores of mesoporous anatase and attached to the crystalline TiO2 walls. The presence of the Zr enhances the photoactivity of the TiO2 catalyst. However, the introduction of Mn decreases the photocatalytic efficiency in a nonadditive manner. The inhibition effect was assigned to the side reaction between hydroxyl radicals and Mn ions. The fact that Mn effectively scavenges the hydroxyl radicals and, consequently, inhibits the whole oxidation process is direct proof that hydroxyl radicals are the main reactive species in the photocatalytic oxidative processes on TiO2 surfaces in aqueous media and the process of COH generation is the rate-determining step, which was confirmed using a method based on the decolorization of a commercial dye Bezaktiv Blau in a reaction with Fenton’s reagent as a source of hydroxyl radicals.
Found in: osebi
Keywords: doping, manganese, oxidation, X-ray absorption spectroscopy, zirconium
Published: 21.07.2016; Views: 1642; Downloads: 0
.pdf Fulltext (577,49 KB)

40.
Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure
Alojz Kodre, Iztok Arčon, Marta Debeljak, Mateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, 2017, original scientific article

Abstract: Mercury (Hg) – plant – fungal interactions are only poorly studied. Hg speciation and ligand environment in maize roots inoculated with arbuscular mycorrhizal (AM) fungi were investigated in order to better understand the role of AM in Hg soil to root transfer. The maize plants were grown in Hg polluted substrate (50 mg g1 as dissolved HgCl2) and inoculated with AM fungi originating from: a) highly Hg polluted environment of a former Hg smelting site in Idrija, Slovenia, (Glomus sp. – sample AmI), and b) non-polluted environment (commercial AM inoculum Symbivit1 – sample AmC). Hg speciation and ligand environment in maize roots was studied by Hg-L3 XANES and EXAFS with emphasis on XAS methodology – modelling and fitting the XAFS spectra to extract in a reliable way as much information on Hg coordination as possible. The AmI plants developed more arbuscules and less vesicles than the AmC plants, and also accumulated more Hg in the roots. A clear difference in Hg coordination between the AM (AmC & AmI) and the control (ConC & ConI) plants is recognized in Hg L3-edge EXAFS analysis: in the ConC & ConI maize roots 73–80% of Hg is attached between two sulphur atoms at the distance of 2.34 Å. The remaining ligand is nitrogen at 2.04 Å. In AmI & AmC roots another Hg-S attachment encompassing four thiol groups at the S-distance of 2.50 Å are identified, accounting for 21–26%. AM fungi can modify Hg ligand environment in plant roots, thus playing an important role in biogeochemical cycling of Hg in terrestrial ecosystems.
Found in: osebi
Keywords: EXAFS XANES Arbuscular mycorrhiza Phytoremediation Toxicity Hg coordination Ligand environment
Published: 27.09.2016; Views: 2809; Downloads: 0
.pdf Fulltext (1,82 MB)

Search done in 0 sec.
Back to top