Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A multielement analysis of Cu induced changes in the mineral profilesof Cu sensitive and tolerant populations of Silene paradoxa L.
Sara Pignattelli, Ilaria Colzi, Antonella Buccianti, Ilenia Cattani, Gian Maria Beone, Henk Schat, Cristina Gonnelli, 2013, izvirni znanstveni članek

Opis: tThis work investigates the Cu induced changes in element profiles in contrasting ecotypes of Silene para-doxa L. A metallicolous copper tolerant population and a non-metallicolous sensitive population weregrown in hydroponics and exposed to different CuSO4treatments. Shoot and root concentrations of Ca,Cu, Fe, K, Mg, Mn, Mo, Na, P, S and Zn were evaluated through ICP-OES.Results indicated that increasing the environmental Cu concentration had a population dependenteffect on element profiles, shoot-to-root ratios and correlations among the elements. Generally, in thetolerant population Cu treatment induced a higher element accumulation in roots and had minimaleffects on the shoot element profile, thus resulting in a progressively decreasing shoot-to-root ratio foreach element. In the sensitive population element concentrations in root and shoot were much moreaffected and without a consistent trend. Copper treatment also affected the correlations between theelements, both in roots and shoots of the two populations, but more so in the sensitive population thanin the tolerant one. Thus, Cu exposure strongly disturbed element homeostasis in the sensitive population,but barely or not in the tolerant one, probably mainly due to a higher capacity to maintain proper rootfunctioning under Cu exposure in the latter. Differences in element profiles were also observed in theabsence of toxic Cu exposure. These differences may reflect divergent population-specific adaptations todifferential nutrient availability levels prevailing in the populations’ natural environments. There is noevidence of inherent side-effects of the Cu tolerance mechanism operating in the tolerant population.
Ključne besede: Mineral profile, Copper tolerance, Silene paradoxa, Compositional data analysis
Objavljeno v RUNG: 20.04.2020; Ogledov: 2768; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress
Cosimo Taiti, Elisabetta Giorni, Ilaria Colzi, Sara Pignattelli, Nadia Bazihizina, Antonella Buccianti, Simone Luti, Luigia Pazzagli, Stefano Mancuso, Cristina Gonnelli, 2016, izvirni znanstveni članek

Opis: We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies.
Ključne besede: Biotic interactions Callose Heavy metals Oxidative stress VOCs
Objavljeno v RUNG: 20.04.2020; Ogledov: 3297; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh