Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations
Maximillien Desservettaz, Michael Pikridas, Iasonas Stavroulas, Aikaterini Bougiatioti, Eleni Liakakou, Nikolaos Hatzianastassiou, Jean Sciare, Nikolaos Mihalopoulos, Efstratios Bourtsoukidis, 2023, izvirni znanstveni članek

Opis: Biomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece. Ioannina is situated in a valley within the Dinaric Alps and experiences intense atmospheric pollution accumulation during winter due to its topography and high wood burning activity. During pollution event days, the ambient mixing ratios of key VOC species were found to be similar to those reported for major urban centres worldwide. Positive matrix factorisation (PMF) analysis revealed that biomass burning was the dominant emission source (>50 %), representing two thirds of OH reactivity, which indicates a highly reactive atmospheric mixture. Calculated OH reactivity ranges from 5 s−1 to an unprecedented 278 s−1, and averages at 93 ± 66 s−1 at 9 PM, indicating the presence of exceptionally reactive VOCs. The highly pronounced photochemical formation of organic acids coincided with the formation of ozone, highlighting the significance of secondary formation of pollutants in poorly ventilated urban areas. Our findings underscore the pressing need to transition from wood burning to environmentally friendly sources of energy in poorly ventilated urban areas, in order to improve air quality and safeguard public health.
Ključne besede: biomass burning, urban air quality, VOCs, emission factors, source apportionment
Objavljeno v RUNG: 13.05.2024; Ogledov: 135; Prenosov: 1
.pdf Celotno besedilo (8,93 MB)

2.
Ambient carbonaceous aerosol levels in Cyprus and the role of pollution transport from the Middle East
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, 2023, izvirni znanstveni članek

Opis: Abstract. The geographical origin and source apportionment of submicron carbonaceous aerosols (organic aerosols, OAs, and black carbon, BC) have been investigated here for the first time, deploying high time-resolution measurements at an urban background site of Nicosia, the capital city of Cyprus, in the eastern Mediterranean. This study covers a half-year period, encompassing both the cold and warm periods with continuous observations of the physical and chemical properties of PM1 performed with an Aerosol Chemical Speciation Monitor (ACSM), an aethalometer, accompanied by a suite of various ancillary offline and online measurements. Carbonaceous aerosols were dominant during both seasons (cold and warm periods), with a contribution of 57 % and 48 % to PM1, respectively, and exhibited recurrent intense nighttime peaks (> 20–30 µg m−3) during the cold period, associated with local domestic heating. The findings of this study show that high concentrations of sulfate (close to 3 µg m−3) were continuously recorded, standing among the highest ever reported for Europe and originating from the Middle East region. Source apportionment of the OA and BC fractions was performed using the positive matrix factorization (PMF) approach and the combination of two models (aethalometer model and multilinear regression), respectively. Our study revealed elevated hydrocarbon-like organic aerosol (HOA) concentrations in Nicosia (among the highest reported for a European urban background site), originating from a mixture of local and regional fossil fuel combustion sources. Although air masses from the Middle East had a low occurrence and were observed mostly during the cold period, they were shown to strongly affect the mean concentrations levels of BC and OA in Nicosia during both seasons. Overall, the present study brings to our attention the need to further characterize primary and secondary carbonaceous aerosols in the Middle East, an undersampled region characterized by continuously increasing fossil fuel (oil and gas) emissions and extreme environmental conditions, which can contribute to photochemical ageing.
Ključne besede: PM1, BC, source apportionment, Cyprus, long range transport
Objavljeno v RUNG: 10.05.2024; Ogledov: 125; Prenosov: 2
.pdf Celotno besedilo (5,55 MB)
Gradivo ima več datotek! Več...

3.
The Unmanned Systems Research Laboratory (USRL) : a new facility for UAV-based atmospheric observations
Maria Kezoudi, Christos Keleshis, Panayiota Antoniou, George Biskos, Murat Bronz, Christos Constantinides, Maximillien Desservettaz, Ru-Shan Gao, Joe Girdwood, Griša Močnik, 2021, izvirni znanstveni članek

Opis: The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks.
Ključne besede: landscape, proximity, still life, COVID-19, domesticity
Objavljeno v RUNG: 16.08.2021; Ogledov: 1769; Prenosov: 147
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh