11. |
12. STUDY OF ATMOSPHERIC AEROSOL PROPERTIES IN THE VIPAVA VALLEYLonglong Wang, doktorska disertacija Opis: The aim of the dissertation was to study aerosol loading distributions and properties over the Vipava valley, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin.
An infrared Mie and a two-wavelength polarization Raman lidar systems
were used as main detection tools. The polarization Raman lidar, which
provides the capability to extract the extinction coefficient, backscatter coefficients, depolarization ratio, backscatter Ångström exponent, lidar ratio and
water vapor mixing ratio profiles, was itself designed, built and calibrated as
a part of this thesis. Lidar data, combined with in-situ measurements, was
used to determine detailed information on different aerosol types. Vertical
profiles of aerosol mass concentration were extracted from the Mie lidar data
taken in April 2016, where the in-situ measurements of aerosol size distribution and number concentration as well as aerosol absorption coefficient and black carbon mass concentration were used to estimate the mass extinction efficiency (MEE). Aerosol morphology and chemical composition determined by SEM-EDX on sampled particles were used for the identification
of primary aerosol types. Two cases with different atmospheric conditions
(long range mineral dust transport and local biomass burning) and different
expected the dominant presence of specific aerosol types (mineral dust and
soot) were investigated in more detail. They revealed significantly different
aerosol properties and distributions within the valley, affecting radiative heat
exchange.
A more detailed investigation of aerosol properties throughout the troposphere in different atmospheric conditions was made possible by the two-wavelength polarization Raman lidar system, deployed in Ajdovščina (town
of Vipava valley) from September 2017. Using its aerosol identification capabilities, based on particle depolarization ratio and lidar ratio measurements,
it was possible to identify predominant aerosol types in the observed atmospheric structures, for example in different atmospheric layers in the case of
the stratified atmosphere. Primary anthropogenic aerosols within the valley were found to be mainly emitted from two sources: individual domestic
heating systems, which mostly use biomass fuel and traffic. Natural aerosols,
transported over large distances, such as mineral dust and sea salt, were observed both above and entering into the planetary boundary layer. Backscatter contribution of each aerosol type was separated and the corresponding
extinction contribution was derived from lidar observations. Najdeno v: osebi Ključne besede: Vipava valley, aerosol distribution, aerosol characterization, lidar
remote sensing, in-situ measurements, aerosol loading. Objavljeno: 23.10.2018; Ogledov: 3969; Prenosov: 79
Polno besedilo (29,39 MB) |
13. Efficient traffic regulation based on urban Black Carbon measurements and prediction modelAsta Gregorič, Luka Drinovec, Griša Močnik, Anja Barle, Matija Marolt, Jernej Henigman, Borut Šuštar, Mitja Ferlan, Andrej Pangeršič, 2018, objavljeni povzetek znanstvenega prispevka na konferenci Najdeno v: osebi Ključne besede: air quality, black carbon Objavljeno: 29.10.2018; Ogledov: 1352; Prenosov: 0
Polno besedilo (568,01 KB) |
14. Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case StudyMiloš Miler, Janja Vaupotič, Luka Drinovec, Griša Močnik, William Eichinger, Klemen Bergant, Samo Stanič, Longlong Wang, Mateja Gosar, Asta Gregorič, 2019, izvirni znanstveni članek Opis: Aerosol vertical profiles are valuable inputs for the evaluation of aerosol transport models, in order to improve the understanding of aerosol pollution ventilation processes which drive the dispersion of pollutants in mountainous regions. With the aim of providing high-accuracy vertical distributions of particle mass concentration for the study of aerosol dispersion in small-scale valleys, vertical profiles of aerosol mass concentration for aerosols from different sources (including Saharan dust and local biomass burning events) were investigated over the Vipava valley, Slovenia, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. The analysis was based on datasets taken between 1–30 April 2016. In-situ measurements of aerosol size, absorption, and mass concentration were combined with lidar remote sensing, where vertical profiles of aerosol concentration were retrieved. Aerosol samples were characterized by SEM-EDX, to obtain aerosol morphology and chemical composition. Two cases with expected dominant presence of different specific aerosol types (mineral dust and biomass-burning aerosols) show significantly different aerosol properties and distributions within the valley. In the mineral dust case, we observed a decrease of the elevated aerosol layer height and subsequent spreading of mineral dust within the valley, while in the biomass-burning case we observed the lifting of aerosols above the planetary boundary layer (PBL). All uncertainties of size and assumed optical properties, combined, amount to the total uncertainty of aerosol mass concentrations below 30% within the valley. We have also identified the most indicative in-situ parameters for identification of aerosol type. Najdeno v: osebi Ključne besede: valley air pollution, aerosol vertical distributions, lidar remote sensing, in-situ measurements, aerosol identification Objavljeno: 09.01.2019; Ogledov: 1606; Prenosov: 53
Polno besedilo (7,43 MB) |
15. |
16. Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDARLuka Drinovec, Griša Močnik, William Eichinger, Samo Stanič, Longlong Wang, Asta Gregorič, 2019, izvirni znanstveni članek Opis: Vipava valley in Slovenia is a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. Aerosol loading distributions and optical properties were investigated using a two-wavelength polarization Raman LiDAR, which provided extinction coefficient, backscatter coefficient, depolarization ratio, backscatter Ångström exponent and LiDAR ratio profiles. Two different representative meteorological situations were investigated to explore the possibility of identifying aerosol types present in the valley. In the first case, we investigated the effect of strong downslope (Bora) wind on aerosol structures and characteristics. In addition to observing Kelvin–Helmholtz instability above the valley, at the height of the adjacent mountain ridge, we found new evidence for Bora-induced processes which inject soil dust aerosols into the free troposphere up to twice the height of the planetary boundary layer (PBL). In the second case, we investigated aerosol properties and distributions in stable weather conditions. From the observed stratified vertical aerosol structure and specific optical properties of different layers we identified predominant aerosol types in these layers. Najdeno v: osebi Ključne besede: aerosol structures, aerosol characterization, polarization Raman LiDAR, Vipava valley Objavljeno: 08.03.2019; Ogledov: 1415; Prenosov: 58
Polno besedilo (3,11 MB) |
17. Experimental determination of black and brown carbon heating rate from mid-latitudes to the Arctic ocean, and related energy gradientLuca Ferrero, Luca Cataldi, Griša Močnik, Asta Gregorič, Piotr Markuszewski, Przemek Makuch, Paulina Pakszys, Tomek Petelski, E. Bolzacchini, Tymon Zielinski, 2019, objavljeni povzetek znanstvenega prispevka na konferenci Najdeno v: osebi Ključne besede: black carbon, heating rate, Arctic Objavljeno: 17.07.2019; Ogledov: 958; Prenosov: 0
Polno besedilo (6,60 MB) |
18. |
19. |
20. Hidden black carbon air pollution in hilly rural areas - a case study of Dinaric depressionKristina Glojek, Asta Gregorič, Griša Močnik, Andrea Cuesta-Mosquera, A. Wiedensohler, Luka Drinovec, Matej Ogrin, 2020, izvirni znanstveni članek Opis: Air pollution is not an exclusively urban problem as wood burning is a widespread practice in rural areas. As we lack information on the air quality situation in rural mountainous regions, our aim is to examine equivalent black carbon (eBC) pollution in a typical rural karst area in the settlement of Loški Potok (Slovenia). eBC mass concentrations were measured by Aethalometer (AE-33) at two sites in Retje karst depression. The rural village station was located at the bottom of the karst depression whereas the rural background station was positioned at the top of the hill. We showthe diurnal variation of equivalent black carbon mass concentrations for different seasons. In the populated karst depression, the major source of eBC pollution are households using wood as a heating fuel reaching the highest mass concentrations in winter. Diurnal pattern of eBC from biomass burning and traffic differ due to different source activity and it is influenced by typical formation of a cold air pool from late afternoon until late morning, restricting the dispersion of local emissions. The large difference in mass concentrations between the lowest part of the village (rural station) and the top of the hill (rural background station) indicates that in a vertically stratified and stable atmosphere local sources of black carbon have a major impact onair quality conditions in the area studied. Since in Alpine and Dinaric regions there are many similar inhabited areas, we can expect similar air quality conditions also in other rural hilly areas with limited self-cleaning air capacity. Najdeno v: osebi Ključne besede: air pollution, black carbon, hidden geographies, diurnal variation, biomass burning, relief depressions, Loški Potok, Slovenia Objavljeno: 04.01.2021; Ogledov: 217; Prenosov: 0
Polno besedilo (1,15 MB) |