Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


51 - 60 / 70
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
51.
Role of Surface Cu-O-Zr Sites in the Photocatalytic Activity of TiO2 Nanoscale Particles
Nataša Novak Tušar, Iztok Arčon, Urška Lavrenčič Štangar, Olena Pliekhova, 2016, objavljeni povzetek znanstvenega prispevka na konferenci

Najdeno v: osebi
Ključne besede: Photocatalysis, Titanium dioxide, Copper, Zirconia, co-doping, EXAFS, XANES
Objavljeno: 23.08.2017; Ogledov: 1261; Prenosov: 0
.pdf Polno besedilo (426,28 KB)

52.
53.
54.
55.
56.
57.
58.
59.
Surface modified titanium dioxide using transition metals
Andraž Šuligoj, Iztok Arčon, Matjaž Mazaj, Goran Dražić, Denis Arčon, Pegie Cool, Urška Lavrenčič Štangar, Nataša Novak Tušar, 2018, izvirni znanstveni članek

Opis: Titanium dioxide has been widely used as an antimicrobial agent, UV-filter and catalyst for pollution abatement. Herein, surface modifications with selected transition metals (Me) over colloidal TiO2 nanoparticles and immobilization with a colloidal SiO2 binder as composite films (MeTiO2/SiO2) on a glass carrier were used to enhance solar-light photoactivity. Colloidal TiO2 nanoparticles were modified by loading selected transition metals (Me ¼ Mn, Fe, Co, Ni, Cu, and Zn) in the form of chlorides on their surface. They were present primarily as oxo-nanoclusters and a portion as metal oxides. The structural characteristics of bare TiO2 were preserved up to an optimal metal loading of 0.5 wt%. We have shown in situ that metal-oxo-nanoclusters with a redox potential close to that of O2/O2 were able to function as co-catalysts on the TiO2 surface which was excited by solar-light irradiation. The materials were tested for photocatalytic activity by two opposite methods; one detecting O2 (reduction, Rz ink test) while the other detecting OH (oxidation, terephthalic acid test). It was shown that the enhancement of the solar-light activity of TiO2 by the deposition of transition metal oxo-nanoclusters on the surface depends strongly on the combination of the reduction potential of such species and appropriate band positions of their oxides. The latter prevented excessive self-recombination of the photogenerated charge carriers by the nanoclusters in Ni and Zn modification, which was probably the case in other metal modifications. Overall, only Ni modification had a positive effect on solar photoactivity in both oxidation and reduction reactions.
Najdeno v: osebi
Ključne besede: surface modified TiO2, XANES, EXAFS, Nickel, solar light photocatalyst
Objavljeno: 01.06.2018; Ogledov: 495; Prenosov: 0
.pdf Polno besedilo (1,24 MB)

60.
Effects of Different Copper Loadings on the Photocatalytic Activity of TiO2-SiO2 Prepared at a Low Temperature for the Oxidation of Organic Pollutants in Water
T. Čižmar, Iztok Arčon, Mattia Fanetti, Urška Lavrenčič Štangar, 2018, izvirni znanstveni članek

Opis: The objective of this research is to examine how Cu modification can improve the photocatalytic activity of TiO2-SiO2, to explainthe correlation between the Cu concentration and the chemical state of Cu cations in the TiO2-SiO2 matrix, and the photocatalytic activity under UV/solar irradiation. The Cu-modified TiO2-SiO2 photocatalysts were prepared by a low-temperature sol–gel method from organic Cu, Si and Ti precursors with various Cu concentrations (0.05–3 mol %). The sol–gels were dried at 150 8C to obtain the photocatalysts in a powder form. The photocatalytic activity was determined by using a fluorescence- based method of terephthalic acid decomposition. An up to three times increase in photocatalytic activity is obtained if the TiO2-SiO2 matrix is modified with Cu in a narrow concentration range from 0.05 to 0.1 mol%. At higher Cu loadings, the photocatalytic activity of the Cu-modified photocatalysts is lower than that of the un-modified reference TiO2-SiO2 photocatalyst. XRD was used to show that all Cu-modified TiO2-SiO2 composites with different Cu concentrations have the same crystalline structure as un-modified TiO2-SiO2 composites. The addition of Cu does not change the relative ratio between the anatase and brookite phases or unit cell parameters of the two TiO2 crystalline structures. We used Cu K-edge X-ray absorption near edge structure and extended X-ray absorption fine structure analyses to determine the valence state and local structure of Cu cations in the Cu-modified TiO2-SiO2 photocatalysts. The results elucidate the mechanism responsible for the improved photocatalytic activity. In samples with a low Cu content, which exhibit the highest activity, Cu@O@Ti connections are formed, which suggests that the activity enhancement is caused by the attachment of CuII cations on the surface of the photocatalytically active TiO2 nanoparticles, so CuII cations may act as free-electron traps, which reduce the intensity of recombination between electrons and holes at the TiO2 photocatalyst surface. At higher Cu loadings no additional Cu@O@Ti connections are formed, instead only Cu@O@Cu connections are established. This indicates the formation of amorphous or nanocrystalline copper oxide, which hinders the photocatalytic activity of TiO2.
Najdeno v: osebi
Ključne besede: Cu modified TiO2-SiO2 photocatalyst Cu EXAFS, XANES, Organic pollutants
Objavljeno: 30.08.2018; Ogledov: 529; Prenosov: 0
.pdf Polno besedilo (1,53 MB)

Iskanje izvedeno v 0 sek.
Na vrh