Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


21 - 30 / 30
First pagePrevious page123Next pageLast page
21.
CVD Growth of Molybdenum Diselenide Surface Structures with Tailored Morphology
M. Naeem Sial, Usman Muhammad, Binjie Zheng, Yanan Yu, Andraž Mavrič, Fangzhu Qing, Matjaž Valant, Zhiming M. Wang, 2018, original scientific article

Abstract: Controllable atmospheric pressure CVD has been optimized to grow transition metal dichalcogenide MoSe2 with tunable morphology at 750 °C on a silicon substrate with a native oxide layer of 250 nm. Utilizing tetrapotassium perylene-3,4,9,10-tetracarboxylate (PTAS) as a seed promoter and varying the vertical distance between the substrate and the precursor MoO3, different morphologies of MoSe2 were achieved, including 2D triangles, hexagons, 3D pyramids and vertically aligned MoSe2 sheets. We find that the shape of MoSe2 is highly dependent upon the distance h between the substrate and the precursor. The change in the morphology is attributed to the confinement of vapor (MoO3 and Se) precursors and their concentrations due to the change in h. These results are helpful in improving our understanding about the factors which influence the morphology (shape evolution) and also the continuous growth of MoSe2 films.
Found in: osebi
Keywords: Transition metal dichalcogenides, 2D materials, Seed promotor, Chemical vapor deposition, Molybdenum diselenide
Published: 20.08.2018; Views: 1936; Downloads: 0
.pdf Fulltext (2,68 MB)

22.
Aerosol monitoring over Vipava valley using Raman polarization lidar
Luka Drinovec, Griša Močnik, Asta Gregorič, William Eichinger, Klemen Bergant, Samo Stanič, Longlong Wang, 2018, published scientific conference contribution abstract

Abstract: Vipava valley in southwest Slovenia is a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin in mountainous terrain. An investigation of aerosol properties throughout the troposphere in different atmospheric conditions was made possible by a deployment of a two-wavelength polarization Raman lidar system combining with in-situ measurements in the valley (in the town of Ajdovščina) from September 2017. Using its aerosol identification capabilities, which are based on particle depolarization ratio and lidar ratio measurements, it was possible to identify predominant aerosol types in the observed atmospheric structures, for example in different atmospheric layers in the case of stratified atmosphere. Primary anthropogenic aerosols within the valley were found to be mainly emitted from two sources: individual domestic heating systems, which mostly use biomass fuel, and from traffic. A considerable fraction of natural aerosols (for example mineral dust and sea salt), transported over large distances, were observed both above and entering into the planetary boundary layer. According to the properties of different aerosol types, backscatter contribution of each aerosol type was evaluated and the corresponding extinction contribution was derived from lidar observations. Statistical analysis of the presence of different aerosol types was performed on the entire available dataset from 2017 and 2018.
Found in: osebi
Keywords: lidar, aerosol type, Vipava valley
Published: 03.12.2018; Views: 2075; Downloads: 0
.pdf Fulltext (48,09 KB)

23.
Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDAR
Luka Drinovec, Griša Močnik, William Eichinger, Samo Stanič, Longlong Wang, Asta Gregorič, 2019, original scientific article

Abstract: Vipava valley in Slovenia is a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. Aerosol loading distributions and optical properties were investigated using a two-wavelength polarization Raman LiDAR, which provided extinction coefficient, backscatter coefficient, depolarization ratio, backscatter Ångström exponent and LiDAR ratio profiles. Two different representative meteorological situations were investigated to explore the possibility of identifying aerosol types present in the valley. In the first case, we investigated the effect of strong downslope (Bora) wind on aerosol structures and characteristics. In addition to observing Kelvin–Helmholtz instability above the valley, at the height of the adjacent mountain ridge, we found new evidence for Bora-induced processes which inject soil dust aerosols into the free troposphere up to twice the height of the planetary boundary layer (PBL). In the second case, we investigated aerosol properties and distributions in stable weather conditions. From the observed stratified vertical aerosol structure and specific optical properties of different layers we identified predominant aerosol types in these layers.
Found in: osebi
Keywords: aerosol structures, aerosol characterization, polarization Raman LiDAR, Vipava valley
Published: 08.03.2019; Views: 1947; Downloads: 73
.pdf Fulltext (3,11 MB)

24.
Do children derive exact meanings pragmatically? Evidence from a dual morphology language
David Barner, Longlong Wang, Dimitrios Skordos, Amanda Saksida, Jessica Sullivan, Rok Žaucer, Franc Marušič, 2021, original scientific article

Abstract: Number words allow us to describe exact quantities like sixty-three and (exactly) one. How do we derive exact interpretations? By some views, these words are lexically exact, and are therefore unlike other grammatical forms in language. Other theories, however, argue that numbers are not special and that their exact interpretation arises from pragmatic enrichment, rather than lexically. For example, the word one may gain its exact interpretation because the presence of the immediate successor two licenses the pragmatic inference that one implies “one, and not two”. To investigate the possible role of pragmatic enrichment in the development of exact representations, we looked outside the test case of number to grammatical morphological markers of quantity. In particular, we asked whether children can derive an exact interpretation of singular noun phrases (e.g., “a button”) when their language features an immediate “successor” that encodes sets of two. To do this, we used a series of tasks to compare English-speaking children who have only singular and plural morphology to Slovenian-speaking children who have singular and plural forms, but also dual morphology, that is used when describing sets of two. Replicating previous work, we found that English-speaking preschoolers failed to enrich their interpretation of the singular and did not treat it as exact. New to the present study, we found that 4- and 5-year-old Slovenian-speakers who comprehended the dual treated the singular form as exact, while younger Slovenian children who were still learning the dual did not, providing evidence that young children may derive exact meanings pragmatically.
Found in: osebi
Keywords: Acquisition of quantity expressions, Acquisition of exactness, Pragmatics of grammatical number, Inferences on quantity, Dual, Slovenian
Published: 13.12.2020; Views: 699; Downloads: 0
.pdf Fulltext (1,33 MB)

25.
Uranium isotope fractionation during adsorption, (co) precipitation, and biotic reduction
Douglas R. Evans, Bastian R. Georg, Wei Wang, Breda Novotnik, Duc Huy Dang, 2016, original scientific article

Abstract: Uranium contamination of surface environments is a problem associated with both U-ore extraction/processing and situations in which groundwater comes into contact with geological formations high in uranium. Apart from the environmental concerns about U contamination, its accumulation and isotope composition have been used in marine sediments as a paleoproxy of the Earth’s oxygenation history. Understanding U isotope geochemistry is then essential either to develop sustainable remediation procedures as well as for use in paleotracer applications. We report on parameters controlling U immobilization and U isotope fractionation by adsorption onto Mn/Fe oxides, precipitation with phosphate, and biotic reduction. The light U isotope (235U) is preferentially adsorbed on Mn/Fe oxides in an oxic system. When adsorbed onto Mn/Fe oxides, dissolved organic carbon and carbonate are the most efficient ligands limiting U binding resulting in slight differences in U isotope composition (δ238U = 0.22 ± 0.06‰) compared to the DOC/DIC-free configuration (δ238U = 0.39 ± 0.04‰). Uranium precipitation with phosphate does not induce isotope fractionation. In contrast, during U biotic reduction, the heavy U isotope (238U) is accumulated in reduced species (δ238U up to −1‰). The different trends of U isotope fractionation in oxic and anoxic environments makes its isotope composition a useful tracer for both environmental and paleogeochemical applications.
Found in: osebi
Keywords: Uranium, fractionation, biotic, abiotic, oxides
Published: 04.10.2019; Views: 1252; Downloads: 0
.pdf Fulltext (4,30 MB)

26.
Variations in U concentrations and isotope signatures in two Canadian lakes impacted by U mining: A combination of anthropogenic and biogeochemical processes
Wei Wang, Duc Huy Dang, Breda Novotnik, R. Douglas Evans, Thai T. Phan, 2019, original scientific article

Abstract: Temporal and vertical variations in uranium (U) concentrations and U isotope (δ238U, ‰) signatures were examined in sediment cores collected seven times over a one year period, from two lakes in Ontario, Canada, which are contaminated with U by historical mining activities. Bow Lake is holomictic, experiencing seasonal anoxia, while the sediments of meromictic Bentley Lake are permanently anoxic. Average annual peak concentrations of U in Bow Lake subsurface sediments were approximately 300 μg L−1 and 600 μg g−1 in porewater and bulk sediments, respectively. Similar ranges of concentrations (900 μg L−1 and 600 μg g−1, respectively) were observed in Bentley Lake sediments. The exceedingly high levels of U observed in the porewaters of both lakes, as well as the seasonal variability in U levels, challenge the traditional paradigm regarding U chemistry, i.e., that reduced U(IV) should be insoluble under anoxic conditions. The average annual δ238U ‰ values at the sediment-water interface of both lakes were similar (i.e., 0.47 ± 0.09‰ and 0.50 ± 0.16‰, relative to IRMM-184). The deep sediments in both Bentley Lake and Bow Lake record U isotope composition with a typical fractionation of 0.6‰ relative to the surface water, confirming authigenic U accumulation, i.e., negligible contribution of particulate material from the tailings. Also, the δ238U values in porewater have an average offset of ca. −0.1‰ relative to bulk sediments in anoxic zones and are reversed in the oxic sediment layer.
Found in: osebi
Keywords: Uranium Isotope composition Uranium tailings Biogeochemical cycling Redox chemistry
Published: 09.10.2019; Views: 1367; Downloads: 0
.pdf Fulltext (3,89 MB)

27.
Magnetic Fields and Afterglows of BdHNe: Inferences from GRB 130427A, GRB 160509A, GRB 160625B, GRB 180728A, and GRB 190114C
Jorge Armando Rueda, Remo Ruffini, Mile Karlica, Rahim Moradi, Yu Wang, 2020, original scientific article

Abstract: GRB 190114C is the first binary-driven hypernova (BdHN) fully observed from initial supernova (SN) appearance to the final emergence of the optical SN signal. It offers an unprecedented testing ground for the BdHN theory, which is here determined and further extended to additional gamma-ray bursts (GRBs). BdHNe comprise two subclasses of long GRBs, with progenitors a binary system composed of a carbon–oxygen star (COcore) and a neutron star (NS) companion. The COcore explodes as an SN, leaving at its center a newborn NS (νNS). The SN ejecta hypercritically accretes on both the νNS and the NS companion. BdHNe I are very tight binaries, where the accretion leads the companion NS to gravitationally collapse into a black hole (BH). In BdHN II, the accretion rate onto the NS is lower, so there is no BH formation. We observe the same afterglow structure for GRB 190114C and other selected examples of BdHNe I (GRB 130427A, GRB 160509A, GRB 160625B) and for BdHN II (GRB 180728A). In all cases, the afterglows are explained via the synchrotron emission powered by the νNS, and their magnetic field structures and their spin are determined. For BdHNe I, we discuss the properties of the magnetic field embedding the newborn BH, which was inherited from the collapsed NS and amplified during the gravitational collapse process, and surrounded by the SN ejecta.
Found in: osebi
Keywords: Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology
Published: 20.07.2020; Views: 824; Downloads: 0
.pdf Fulltext (1,37 MB)

28.
On the GeV Emission of the Type I BdHN GRB 130427A
Laura Beccera, She Sheng Xue, Yu Wang, Narek Sahakyan, Mile Karlica, Yen-Chen Chen, Simonetta Filippi, Christian Cherubini, Carlo Luciano Bianco, Jorge Armando Rueda, Rahim Moradi, Remo Ruffini, 2019, original scientific article

Abstract: We propose that the inner engine of a type I binary-driven hypernova (BdHN) is composed of Kerr black hole (BH) in a non-stationary state, embedded in a uniform magnetic field B_0 aligned with the BH rotation axis and surrounded by an ionized plasma of extremely low density of 10^−14 g cm−3. Using GRB 130427A as a prototype, we show that this inner engine acts in a sequence of elementary impulses. Electrons accelerate to ultrarelativistic energy near the BH horizon, propagating along the polar axis, θ = 0, where they can reach energies of ~10^18 eV, partially contributing to ultrahigh-energy cosmic rays. When propagating with $\theta \ne 0$ through the magnetic field B_0, they produce GeV and TeV radiation through synchroton emission. The mass of BH, M = 2.31M ⊙, its spin, α = 0.47, and the value of magnetic field B_0 = 3.48 × 10^10 G, are determined self consistently to fulfill the energetic and the transparency requirement. The repetition time of each elementary impulse of energy ${ \mathcal E }\sim {10}^{37}$ erg is ~10^−14 s at the beginning of the process, then slowly increases with time evolution. In principle, this "inner engine" can operate in a gamma-ray burst (GRB) for thousands of years. By scaling the BH mass and the magnetic field, the same inner engine can describe active galactic nuclei.
Found in: osebi
Keywords: black hole physics, binaries, gamma-ray burst, neutron stars, supernovae, Astrophysics - High Energy Astrophysical Phenomena
Published: 20.07.2020; Views: 912; Downloads: 0
.pdf Fulltext (1,09 MB)

29.
Electromagnetic emission of white dwarf binary mergers
Jorge Armando Rueda, Remo Ruffini, Yu Wang, Carlo Luciano Bianco, J.M. Blanco-Iglesias, Mile Karlica, P. Lorén-Aguilar, Rahim Moradi, Narek Sahakyan, 2019, original scientific article

Abstract: It has been recently proposed that the ejected matter from white dwarf (WD) binary mergers can produce transient, optical and infrared emission similar to the "kilonovae" of neutron star (NS) binary mergers. To confirm this we calculate the electromagnetic emission from WD-WD mergers and compare with kilonova observations. We simulate WD-WD mergers leading to a massive, fast rotating, highly magnetized WD with an adapted version of the smoothed-particle-hydrodynamics (SPH) code Phantom. We thus obtain initial conditions for the ejecta such as escape velocity, mass and initial position and distribution. The subsequent thermal and dynamical evolution of the ejecta is obtained by integrating the energy-conservation equation accounting for expansion cooling and a heating source given by the fallback accretion onto the newly-formed WD and its magneto-dipole radiation. We show that magnetospheric processes in the merger can lead to a prompt, short gamma-ray emission of up to ≈ 1046 erg in a timescale of 0.1-1 s. The bulk of the ejecta initially expands non-relativistically with velocity 0.01 c and then it accelerates to 0.1 c due to the injection of fallback accretion energy. The ejecta become transparent at optical wavelengths around ~ 7 days post-merger with a luminosity 1041-1042 erg s-1. The X-ray emission from the fallback accretion becomes visible around ~ 150-200 day post-merger with a luminosity of 1039 erg s-1. We also predict the post-merger time at which the central WD should appear as a pulsar depending on the value of the magnetic field and rotation period.
Found in: osebi
Keywords: Astrophysics - High Energy Astrophysical Phenomena
Published: 20.07.2020; Views: 842; Downloads: 0
.pdf Fulltext (8,22 MB)

30.
Search done in 0 sec.
Back to top