Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
In-situ XAS study of catalytic N[sub]2O decomposition over CuO/CeO[sub]2 catalysts
Maxim Zabilsky, Iztok Arčon, Petar Djinović, Elena Tchernychova, Albin Pintar, 2021, izvirni znanstveni članek

Opis: We performed in‐situ XAS study of N 2 O decomposition over CuO/CeO 2 catalysts. The Cu K‐edge and Ce L 3 ‐edge XANES and EXAFS analyses revealed the dynamic and crucial role of Cu 2+ /Cu + and Ce 4+ /Ce 3+ ionic pairs during the catalytic reaction. We observed the initial formation of reduced Cu + and Ce 3+ species during activation in helium atmosphere at 400 °C, while concentration of these species decreased significantly during steady‐state nitrous oxide degradation reaction (2500 ppm N 2 O in He at 400 °C). In‐situ EXAFS analysis further revealed a crucial role of copper‐ceria interface in this catalytic reaction. We observed dynamic changes in average number of Cu‐Ce scatters under reaction conditions, indicating an enlarging the interface between both copper and ceria phases, where electron and oxygen transfer occurs.
Ključne besede: in-situ XAS, Cu EXAFS, CuO/CeO2 nanorod catalys, N2O decomposition
Objavljeno v RUNG: 29.01.2021; Ogledov: 2880; Prenosov: 0
Gradivo ima več datotek! Več...

2.
In-situ XAS analysis of nanoshaped CuO/CeO2 catalysts used for N2O decomposition
Iztok Arčon, Maxim Zabilsky, Petar Djinović, Albin Pintar, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The goal of this research is to establish the working state and correlations between atomic structure and catalytic activity of nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction. The catalysts contained CuO nanoclusters dispersed over different CeO2 morphologies: nano-rods and nano-cubes. N2O is a side product of nitric and adipic acid production and a very potent greenhouse gas that is formed in amounts estimated at about 400 Mt/a of CO2 equivalent. Consequently, the development of robust, active and selective catalysts for N2O decomposition is of a great environmental and economical interest. CeO2-based materials promoted by CuO represent a new class of catalysts that exhibit considerable activity in N2O decomposition reaction between 300 and 500 °C [1-3], and are significantly cheaper and more efficient than Pt, Pd or Rh based catalysts. In order to maximize the efficiency of the catalyst, the active site in this reaction needs to be identified and the mechanism clarified. In-situ Cu K-edge and Ce L3-edge XANES and EXAFS analysis was done on a set of CuO/CeO2 catalysts with different ceria morphology (nano-cubes, nano-rods) and Cu loadings between 2 to 8 wt. %, during N2O decomposition reaction, under controlled reaction conditions at 400 °C. The XAS spectra were measured in-situ, in a tubular reactor, filled with protective He atmosphere at 1 bar, first at RT, then during heating, and at final temperature of 400 °C, during catalytic reaction, when the catalyst was exposed to a small amount (0.2 vol%) of N2O mixed with He. The Cu K-edge and Ce L3-edge XANES and EXAFS analysis reveals changes in valence and local structure of Cu and Ce in the CuO/CeO2 catalysts. In the initial state (in He at RT), copper is present in the form of CuO nanoparticles attached to the CeO2 surface. After heating in He to 400 °C, partial (10%) reduction of Ce [Ce(IV)→Ce(III)] is detected, significant part of Cu(II) is reduced to Cu(I) and Cu(0) species, and direct Cu-Cu bonds are formed. During catalytic N2O decomposition at 400°C, all Ce(III) is oxidized back to Ce(VI), and a major part of Cu is oxidized back to Cu(II), with about 5% of Cu(I) remaining in equilibrium state. Observed structural and valence changes of copper strongly depend on its loading and CeO2 morphology. With systematic In-situ XAS analysis of different nanoshaped CuO/CeO2 catalysts, we identified the structural characteristics and changes of Cu and Ce phases during catalytic N2O decomposition reaction, which could lead to identification of the active catalytic site during the reaction and further improve the performance of these promising catalytic materials.
Ključne besede: EXAFS, CuO/CeO2 catalyst, N2O decomposition
Objavljeno v RUNG: 12.09.2018; Ogledov: 3678; Prenosov: 0
Gradivo ima več datotek! Več...

3.
Operando XAS analysis of CuO/SiO2 and CuO/CeO2 catalysts
Iztok Arčon, Janvit Teržan, Petar Djinović, Maxim Zabilsky, Albin Pintar, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The possibilities of the operando XAS analysis of catalysts will be presented on two case studies of promising new catalytic materials: alkali doped nano-dispersed copper oxide clusters on ordered mesoporous SiO2, which is highly active and selective towards propylene epoxidation [1], and nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction [2]. Operando Cu K-edge and Ce L3-edge XANES and EXAFS analysis was performed during catalytic reactions under controlled reaction conditions in a tubular reactor filled with protective He atmosphere at 1 bar. The spectra were measured before the reaction at RT, then during heating, and during catalytic reaction at 400 °C under controlled atmosphere. Operando XANES analysis is used to monitor the changes in valence states and local symmetries of Cu and Ce cations in the catalysts. A partial reduction of Cu2+ to Cu+ and Cu0 and Ce4+ to Ce3+ species was detected during catalyst activation, and re-oxidation during catalytic reaction. Different dynamics of reaching a quasi-steady oxidation state were revealed as the tested catalysts approached the quasi-steady state after 300 min of reaction. Operando EXAFS spectra are used to precisely determine local structure of Cu and Ce cations, to identify structural characteristics and changes of Cu and Ce species during the catalytic reactions. In this way, the active site in the catalytic reactions can be identified and the mechanism of the reaction clarified. The results of operando XAS analyses are crucial to guide further material modification, to obtain more effective catalyst, and material which is more resistant to inhibiting effects that cause catalyst deactivation during catalytic reaction.
Ključne besede: katalizatorji, Cu XANES, EXAFS
Objavljeno v RUNG: 12.09.2018; Ogledov: 3392; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh