Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Studies in the atmospheric monitoring at the Pierre Auger Observatory using the upgraded Central Laser Facility
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Carlos Medina-Hernandez, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The Fluorescence Detector (FD) at the Pierre Auger Observatory measures the intensity of the scattered light from laser tracks generated by the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) to monitor and estimate the vertical aerosol optical depth (τ(z,t)). This measurement is needed to obtain unbiased and reliable FD measurements of the arrival direction and energy of the primary cosmic ray, and the depth of the maximum shower development. The CLF was upgraded substantially in 2013 with the addition of a solid state laser, new generation GPS, a robotic beam calibration system, better thermal and dust isolation, and improved software. The upgrade also included a back-scatter Raman LIDAR to measure τ(z,t). The new features and applications of the upgraded instrument are described. These include the laser energy calibration and the atmospheric monitoring measurements. The first τ(z,t) results and comparisons after the upgrade are presented using different methods. The first method compares the FD hourly response to the scattered light from the CLF (or XLF) against a reference hourly profile measured during a clear night where zero aerosol contents are assumed. The second method simulates FD responses with different atmospheric parameters and selects the parameters that provide the best fit to the actual FD response. A third method uses the new Raman LIDAR receiver in-situ to measure the back-scatter light from the CLF laser. The results show a good data agreement for the first and second methods using FD stations located at the same distance from the facilities. Preliminary results of τ(z,t) using the Raman LIDAR are presented as well.
Najdeno v: ključnih besedah
Povzetek najdenega: ...The Fluorescence Detector (FD) at the Pierre Auger Observatory measures...
Ključne besede: Pierre Auger Observatory, extensive air showers, the Fluorescence Detector, atmospheric monitoring, vertical aerosol optical depth, the Central Laser Facility, the eXtreme Laser Facility
Objavljeno: 03.03.2016; Ogledov: 1946; Prenosov: 113
.pdf Polno besedilo (3,96 MB)

2.
Automated procedures for the Fluorescence Detector calibration at the Pierre Auger Observatory
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Gaetano Salina, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The quality of the physics results, derived from the analysis of the data collected at the Pierre Auger Observatory depends heavily on the calibration and monitoring of the components of the detectors. It is crucial to maintain a database containing complete information on the absolute calibration of all photomultipliers and their time evolution. The low rate of the physics events implies that the analysis will have to be made over a long period of operation. This requirement imposes a very organized and reliable data storage and data management strategy, in order to guarantee correct data preservation and high data quality. The Fluorescence Detector (FD) consists of 27 telescopes with about 12,000 phototubes which have to be calibrated periodically. A special absolute calibration system is used. It is based on a calibrated light source with a diffusive screen, uniformly illuminating photomultipliers of the camera. This absolute calibration is performed every few years, as its use is not compatible with the operation of the detector. To monitor the stability and the time behavior, another light source system operates every night of data taking. This relative calibration procedure yields more than 2×10[sup]4 raw files each year, about 1 TByte/year. In this paper we describe a new web-interfaced database architecture to manage, store, produce and analyse FD calibration data. It contains the configuration and operating parameters of the detectors at each instant and other relevant functional parameters that are needed for the analysis or to monitor possible instabilities, used for the early discovery of malfunctioning components. Based on over 10 years of operation, we present results on the long term performance of FD and its dependence on environmental variables. We also report on a check of the absolute calibration values by analysing the signals left by stars traversing the FD field of view.
Najdeno v: ključnih besedah
Ključne besede: Pierre Auger Observatory, Fluorescence Detector, detector calibration and monitoring, automated calibration procedure
Objavljeno: 03.03.2016; Ogledov: 1664; Prenosov: 127
.pdf Polno besedilo (1,06 MB)

3.
Improvements to aerosol attenuation measurements at the Pierre Auger Observatory
Max Malacari, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, objavljeni znanstveni prispevek na konferenci

Najdeno v: ključnih besedah
Povzetek najdenega: ...aerosol attenuation measurements, Pierre Auger Observatory, fluorescence detector...
Ključne besede: aerosol attenuation measurements, Pierre Auger Observatory, fluorescence detector
Objavljeno: 19.02.2018; Ogledov: 1104; Prenosov: 104
.pdf Polno besedilo (1,96 MB)

4.
The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years
J. P. Lundquist, R.U. Abbasi, 2016, izvirni znanstveni članek

Opis: The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10^17.2eV measured by the fluorescence detectors and a comparison with previously published results.
Najdeno v: ključnih besedah
Povzetek najdenega: ...Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the...
Ključne besede: Cosmic rays, Ultra-high energy, Fluorescence detector, Energy spectrum, Ankle, GZK cutoff
Objavljeno: 27.04.2020; Ogledov: 341; Prenosov: 0
.pdf Polno besedilo (1,23 MB)

5.
TA Anisotropy Summary
J. P. Lundquist, K. Kawata, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) detector in the northern hemisphere. It consists of an array of 507 surface detectors (SD) covering a total 700 km^2 and three fluorescence detector stations overlooking the SD array. In this proceedings, we summarize recent results on the search for directional anisotropy of UHECRs using the latest dataset collected by the TA SD array. We obtained hints of the anisotropy of the UHECRs in the northern sky from the various analyses.
Najdeno v: ključnih besedah
Povzetek najdenega: ...covering a total 700 km^2 and three fluorescence detector stations overlooking the SD array. In...
Ključne besede: cosmic radiation, UHE detector, fluorescence detector, surface, Telescope Array Experiment, anisotropy, experimental results
Objavljeno: 28.04.2020; Ogledov: 318; Prenosov: 15
.pdf Polno besedilo (1,88 MB)

6.
Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors
J. P. Lundquist, 2016, objavljeni znanstveni prispevek na konferenci

Opis: A simple cosmic ray track finding pattern recognition analysis (PRA) method for fluorescence detectors (FD) has been developed which significantly improves Xmax resolution and its dependence on energy. Events which have a clear rise and fall in the FD view contain information on Xmax that can be reliably reconstructed. Shower maximum must be extrapolated for events with Xmax outside the field of view of the detector, which creates a systematic dependence on the fitting function. The PRA method is a model and detector independent approach to removing these events, by fitting shower profiles to a set of triangles and applying limits on the allowable geometry.
Najdeno v: ključnih besedah
Povzetek najdenega: ...pattern recognition analysis (PRA) method for fluorescence detectors (FD) has been developed which significantly improves...
Ključne besede: UHECR, cosmic rays, fluorescence detector, track finding, pattern recognition
Objavljeno: 29.04.2020; Ogledov: 312; Prenosov: 34
.pdf Polno besedilo (1,59 MB)

Iskanje izvedeno v 0 sek.
Na vrh