Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil
Sara Pignattelli, Ilaria Colzi, Lorenzo Cecchi, Miluscia Arnetoli, Roberto Monnanni, Roberto Gabbrielli, Cristina Gonnelli, 2012, original scientific article

Abstract: This work investigates the element distribution in Silene paradoxa growing on the mine dump of Fenice Capanne (Tuscany, Italy). The accumulation of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in root apoplast and symplast and in shoot was assessed and compared to the levels of the same metals in the respective rizosphere soils, analyzing both the total and the phytoavailable fractions. Levels of As, Cu, Fe, Pb and Zn, were above toxicity thresholds in both soil and shoot samples. Inter- and intra-element correlations were analyzed in plant and soil using different statistical methods. Soil total and phytoavailable metal concentration were shown not to be dominant in determining metal accumulation by the plant, since no significant positive correlation was found between metal concentration in soils and plants. Moreover, results indicated that S. paradoxa was able to cope with the studied multi-metal contaminated soil excluding the elements from its tissues and preferentially accumulating them into the root compartment, thus suggesting this species as possible good candidate for phytostabilization purposes.
Keywords: Metals, Mine dump, Phytostabilization, Silene paradoxa, Compositional data analysis
Published in RUNG: 20.04.2020; Views: 2732; Downloads: 0
This document has many files! More...

2.
A multielement analysis of Cu induced changes in the mineral profilesof Cu sensitive and tolerant populations of Silene paradoxa L.
Sara Pignattelli, Ilaria Colzi, Antonella Buccianti, Ilenia Cattani, Gian Maria Beone, Henk Schat, Cristina Gonnelli, 2013, original scientific article

Abstract: tThis work investigates the Cu induced changes in element profiles in contrasting ecotypes of Silene para-doxa L. A metallicolous copper tolerant population and a non-metallicolous sensitive population weregrown in hydroponics and exposed to different CuSO4treatments. Shoot and root concentrations of Ca,Cu, Fe, K, Mg, Mn, Mo, Na, P, S and Zn were evaluated through ICP-OES.Results indicated that increasing the environmental Cu concentration had a population dependenteffect on element profiles, shoot-to-root ratios and correlations among the elements. Generally, in thetolerant population Cu treatment induced a higher element accumulation in roots and had minimaleffects on the shoot element profile, thus resulting in a progressively decreasing shoot-to-root ratio foreach element. In the sensitive population element concentrations in root and shoot were much moreaffected and without a consistent trend. Copper treatment also affected the correlations between theelements, both in roots and shoots of the two populations, but more so in the sensitive population thanin the tolerant one. Thus, Cu exposure strongly disturbed element homeostasis in the sensitive population,but barely or not in the tolerant one, probably mainly due to a higher capacity to maintain proper rootfunctioning under Cu exposure in the latter. Differences in element profiles were also observed in theabsence of toxic Cu exposure. These differences may reflect divergent population-specific adaptations todifferential nutrient availability levels prevailing in the populations’ natural environments. There is noevidence of inherent side-effects of the Cu tolerance mechanism operating in the tolerant population.
Keywords: Mineral profile, Copper tolerance, Silene paradoxa, Compositional data analysis
Published in RUNG: 20.04.2020; Views: 2768; Downloads: 0
This document has many files! More...

3.
Linking root traits to copper exclusion mechanisms in Silene paradoxa L. (Caryophyllaceae)
Ilaria Colzi, Sara Pignattelli, Elisabetta Giorni, Alessio Papini, Cristina Gonnelli, 2015, original scientific article

Abstract: Copper is one of the most important pollutants in mine- contaminated soils. This study tests the response in a sensitive population vs a tolerant one of the model species Silene paradoxa in order to understand the general mechanisms of tolerance at the micromorphological and ultrastructural level. Two populations of Silene paradoxa were grown in hydroponics and exposed to different CuSO4 treatments. The roots were investigated with light, fluorescence and transmission electron microscope. Callose and lignin were spectrophotometrically determined. The tolerant population constitutively possessed a higher amount of mucilage and was able to reduce the length of the zone between the apex and the first lignified tracheids. Callose production decreased. It did not show remarkable copper-induced ultrastructural modifications, apart from the presence of precipitates in the tangential walls. The sensitive population showed huge nucleoli with a spongy periphery in the central cylinder together with the presence of electrondense granules in the mitochondria. Plastids were rarely observed and generally very electrondense and elongated. In the copper tolerant population of S. paradoxa some of the root traits concurring to generate metal-excluding roots were suggested to be mucilage and lignin production and the reduction of the subapical root zone.
Keywords: Root, Copper exclusion, Lignin, Callose, Tolerance to copper, Silene paradoxa
Published in RUNG: 20.04.2020; Views: 2648; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top