Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 38
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
1.
Chemistry of the iron-chlorine thermochemical cycle for hydrogen production utilizing industrial waste heat
Matjaž Valant, Uroš Luin, 2024, izvirni znanstveni članek

Opis: This research presents an inventive thermochemical cycle that utilizes a reaction between iron and HCl acid for hydrogen production. The reaction occurs spontaneously at room temperature, yielding hydrogen and a FeCl2 solution as a by-product. Exploring the thermal decomposition of the FeCl2 by-product revealed that, at conditions suitable for utilization of low-temperature industrial waste heat (250 °C), chlorine gas formation can be circumvented. Instead, the resulting by-product is HCl, which is readily soluble in water, facilitating direct reuse in subsequent cycles. The utilization of low-temperature industrial heat not only optimizes resource utilization and reduces operational costs but also aligns with environmentally sustainable production processes. From the kinetic studies the activation energy was calculated to be 45 kJ/mol and kinetics curves were constructed. They showed significant kinetics at room temperature and above but rapid decrease towards lower temperatures. This is important to consider during real-scale technology optimization. The theoretical overall energy efficiency of the cycle, with 100% and 70% heat recuperation, was calculated at 68.8% and 44.8%, respectively. In practical implementation, considering the efficiency of DRI iron reduction technology and free waste heat utilization, the cycle achieved a 41.7% efficiency. Beyond its energy storage capabilities, the Iron-chlorine cycle addresses safety concerns associated with large-scale hydrogen storage, eliminating self-discharge, reducing land usage, and employing cost-effective storage materials. This technology not only facilitates seasonal energy storage but also establishes solid-state energy reserves, making it suitable for balancing grid demands during winter months using excess renewable energy accumulated in the summer.
Ključne besede: chemical cycles, hydrogen production, thermal decomposition, reaction kinetics, iron, chlorine
Objavljeno v RUNG: 12.01.2024; Ogledov: 398; Prenosov: 4
.pdf Celotno besedilo (3,80 MB)
Gradivo ima več datotek! Več...

2.
3.
4.
5.
Efficient electrochemical nitrogen fixation at iron phosphide (Fe_2P) catalyst in alkaline medium
Beata Rytelewska, Anna Chmielnicka, Takwa Chouki, Magdalena Skunik-Nuckowka, Shaghayegh Naghdi, Dominik Eder, Aleksandra Michalowska, Tomasz Ratajczyk, Egon Pavlica, Saim Emin, 2023, izvirni znanstveni članek

Opis: A catalytic system based on iron phosphide (Fe2P) has exhibited electrocatalytic activity toward N2-reduction reaction in alkaline medium (0.5 mol dm−3 NaOH). Based on voltammetric stripping-type electroanalytical measurements, Raman spectroscopic and spectrophotometric data, it can be stated that the Fe2P catalyst facilitates conversion of N2 to NH3, and the process is fairly selective with respect to the competing hydrogen evolution. A series of diagnostic electrocatalytic experiments (utilizing platinum nanoparticles and HKUST-1) have been proposed and performed to control purity of nitrogen gas and to probe presence of potential contaminants such as ammonia, nitrogen oxo-species and oxygen. On the whole, the results are consistent with the view that the interfacial reduced-iron (Fe0) centers, while existing within the network of P sites, induce activation and reduction of nitrogen, parallel to the water splitting (reduction) to hydrogen. It is apparent from Tafel plots and impedance measurements that mechanism and dynamics of nitrogen reduction depends on the applied electroreduction potential. The catalytic system exhibits certain tolerance with respect to the competitive hydrogen evolution and gives (during electrolysis at -0.4 V vs. RHE) the Faradaic efficiency, namely, the selectivity (molar) efficiency, toward production of NH3 on the level of 60%. Under such conditions, the NH3-yield rate has been found to be equal to 7.5 µmol cm−2 h−1 (21 µmol m−2 s−1). By referring to classic concepts of electrochemical kinetic analysis, the rate constant in heterogeneous units has been found to be on the moderate level of 1-2*10−4 cm s−1 (at -0.4 V). The above mentioned iron-phosphorous active sites, which are generated on surfaces of Fe2P particles, have also been demonstrated to exhibit strong catalytic properties during reductions of other electrochemically inert reactants, such as oxygen, nitrites and nitrates.
Ključne besede: nitrogen reduction, alkaline medium, iron phosphide catalyst, ammonia, electrochemical determinations
Objavljeno v RUNG: 30.11.2023; Ogledov: 511; Prenosov: 3
.pdf Celotno besedilo (2,67 MB)
Gradivo ima več datotek! Več...

6.
Separation of mercuric ions using 2-thienylbenzimidazole/cucurbit[7] uril/iron-oxide nanoparticles by pH control
Falguni Chandra, Paltan Laha, Farah Benyettou, Tina Škorjanc, Naʹil Saleh, 2023, izvirni znanstveni članek

Opis: 2-Thienylbenzimidazole (TBI)/cucurbit[7]uril (CB7) host–guest complex was used as a motif to significantly improve the turnover of γ-Fe3O4 magnetic nanoparticles for potential application in the separation of toxic mercuric ions in polluted water samples. The mechanism of restoring the original solid materials is based on applying the pH-controlled preferential binding of the CB7 host to the TBI guest. The analytical application of this concept has not been realized in the literature. The pH-controlled stimuli-responsive abilities were confirmed in aqueous solution by the three-order of magnitudes higher stability constant of the protonated TBIH+/CB7 complex (e.g., K = 4.8 × 108 M−1) when compared to neutral TBI/CB7 complex (e.g., K = 2.4 × 105 M−1), also manifested in an increase in pKa values by ~ 3.3 units in the ground state. The supramolecular interaction and adsorption on iron oxide nanoparticles (NPs) were also spectroscopically confirmed in the solid state. The excited-state lifetime values of TBI/CB7NPs increased upon lowering the pH values (e.g., from 0.6 to 1.3 ns) with a concomitant blue shift of ~ 25 nm because of polarity effects. The time-resolved photoluminescent behaviors of the final solids in the presence of CB7 ensured pH-driven reusable systems for capturing toxic mercuric ions. The study offers a unique approach for the controllable separation of mercury ions using an external magnet and in response to pH through preferential binding of the host to guest molecules on the top of magnetic surfaces.
Ključne besede: iron oxide nanoparticles (IONPs), mercury, thienylbenzimidazole, cucurbit[n]uril
Objavljeno v RUNG: 13.07.2023; Ogledov: 821; Prenosov: 3
.pdf Celotno besedilo (2,41 MB)
Gradivo ima več datotek! Več...

7.
Winning combination of Cu and Fe oxide clusters with an alumina support for low-temperature catalytic oxidation of volatile organic compounds
Tadej Žumbar, Iztok Arčon, Petar Djinović, Giuliana Aquilanti, Gregor Žerjav, Albin Pintar, Alenka Ristić, Goran Dražić, Janez Volavšek, Gregor Mali, Margarita Popova, Nataša Zabukovec Logar, Nataša Novak Tušar, 2023, izvirni znanstveni članek

Opis: A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280−450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200−380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal−support bonding and the optimal abundance between Cu−O−Al and Fe−O−Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide−cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir−Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.
Ključne besede: Iron oxide clusters, copper oxide clusters, alumina support, synergistic effect, low-temperature total catalytic oxidation, toluene, Cu, Fe XANES, EXAFS
Objavljeno v RUNG: 06.07.2023; Ogledov: 958; Prenosov: 11
.pdf Celotno besedilo (11,05 MB)
Gradivo ima več datotek! Več...

8.
9.
Iron phosphide as an efficient electrocatalysts for hydrogen evolution : abstract
Takwa Chouki, Manel Machreki, Saim Emin, 2020, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: We report the solvothermal synthesis of iron phosphide electrocatalysts using a low-cost phosphorus precursor. The synthetic protocol allows for the preparation of a Fe2P phase at 300°C and FeP phase at 350°C. To enhance the catalytic activities of obtained iron phosphide particles, heat-treatments were carried out at elevated temperatures. Annealing at 500°C induced structural changes in the samples: (i) Fe2P provided a pure Fe3P phase (Fe3P−500°C) and (ii) FeP transformed into a mixture of iron phosphide phases (Fe2P/FeP−500°C). The electrocatalytic activities of heat-treated Fe2P−450°C, Fe3P−500°C, and Fe2P/FeP−500°C catalysts were studied for hydrogen evolution reaction (HER) in 0.5 M sulfuric acid (H2SO4). The lowest recorded overpotential of 110 mV at 10 mA cm−2 vs. a reversible hydrogen electrode was achieved with Fe2P/FeP−500°C catalyst. The present approach allows preparation of immobilized iron phsphide catalyst onto carbon support which is essential for application purpose. The procedure developed by us is an elegant approach to tune the composition of iron phosphide catalyst and control the morphology of particles
Ključne besede: solvothermal synthesis iron phosphide electrocatalysis HER
Objavljeno v RUNG: 06.02.2023; Ogledov: 995; Prenosov: 0
Gradivo ima več datotek! Več...

10.
Iron phosphides as efficient electrocatalyst for hydrogen evolution and energy conversion : abstract
Saim Emin, Takwa Chouki, 2021, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. We developed a solvothermal synthesis approach for iron phosphide electrocatalystsusing a low-cost phosphorus precursor.The synthetic protocol allows for the preparation of a Fe2P phase at 300°C and FeP phase at 350°C. The obtained compounds were coated on conductive substrates to prepare catalysts thin films. Here, we exploited different phases of iron phosphide as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) with an I−/I3− based electrolyte [2]. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96±0.06%,which is comparable to the device assembled with a platinum (Pt) CE. In addition to DSSC applications, the iron phosphides were used as electrocatalyst for H2 evolution (Fig. 1). To enhance the catalytic activities of obtained iron phosphide particles, heat-treatments were carried out at elevated temperatures.Annealing at 500°C induced structural changes in the samples: (i) Fe2P provided a pure Fe3P phase (Fe3P−500°C) and (ii) FeP transformed into a mixture of iron phosphide phases (Fe2P/FeP−500°C). The electrocatalytic activities for H2 evolution of heat-treated catalysts were studied in 0.5 M sulfuric acid (H2SO4). The HER activities of the iron phosphide catalyst were found to be phase dependent. The lowest recorded overpotential of 110 mV at 10 mA cm−2 vs. a reversible hydrogen electrode was achieved with Fe2P/FeP−500°C catalyst. The developed procedure is an elegant approach to tune the composition of iron phosphide catalyst and control the morphology of particles.
Ključne besede: Iron phosphides electrocatalyst hydrogen evolution energy conversion
Objavljeno v RUNG: 06.02.2023; Ogledov: 937; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh