21. Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic raysChiara Righi, Giacomo Bonnoli, Fabrizio Tavecchio, Paolo Da Vela, Anita Reimer, Margot Boughelilba, Serguei Vorobiov, Lukas Merten, Jon Paul Lundquist, 2021, published scientific conference contribution Abstract: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction
of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to
FR-1s).
In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during
CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data. Found in: ključnih besedah Summary of found: ...of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon... Keywords: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos Published: 16.08.2021; Views: 609; Downloads: 0
Fulltext (2,04 MB) |
22. Experimental bounds on sterile-active neutrino mixing anglesMihael Petač, 2015, master's thesis Abstract: Despite the success of the Standard Model in the last few decades, we know it is not complete. There is strong motivation for assuming the existence of additional heavy neutral leptons, which can account for active neutrino masses and possibly also have cosmological implications. In this work I consider the Standard Model with two neutral lepton singlets (sterile neutrinos) with degenerated masses in the range 20MeV - 2GeV. The constraints on the active-sterile neutrino mixing angles are evaluated based on recent neutrino oscillations data. Using these constraints the bounds from accelerator experiments are reanalyzed for the case of the considered model. Finally, the results are compared with cosmological constraints coming from Big Bang nucleosynthesis and the nMSM resonant leptogenesis. Found in: ključnih besedah Summary of found: ...Model with two neutral lepton singlets (sterile neutrinos) with degenerated masses in the range 20MeV... Keywords: Sterile neutrinos, Neutrino mixing, See-saw, High-Energy Physics - Phenomenology, High-Energy Physics - Experiments Published: 01.10.2021; Views: 527; Downloads: 16
Fulltext (1,93 MB) |
23. Multi-messenger studies with the Pierre Auger ObservatoryLukas Zehrer, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Marko Zavrtanik, Danilo Zavrtanik, 2021, published scientific conference contribution Abstract: Over the past decade the multi-messenger astrophysics has emerged as a distinct discipline,
providing unique insights into the properties of high-energy phenomena in the Universe. The
Pierre Auger Observatory, located in Malargüe, Argentina, is the world’s largest cosmic ray
detector sensitive to photons, neutrinos, and hadrons at ultra-high energies. Using its data, stringent
limits on photon and neutrino fluxes at EeV energies have been obtained. The collaboration uses
the excellent angular resolution and the neutrino identification capabilities of the Observatory
for follow-up studies of events detected in gravitational waves or other messengers, through
cooperation with global multi-messenger networks. We present a science motivation together
with an overview of the multi-messenger capabilities and results of the Pierre Auger Observatory. Found in: ključnih besedah Summary of found: ...world’s largest cosmic ray
detector sensitive to photons, neutrinos, and hadrons at ultra-high energies. Using its... Keywords: high-energy cosmic phenomena, multi-messenger astrophysical studies, cosmic rays, gamma-rays, neutrinos, Pierre Auger Observatory Published: 06.05.2022; Views: 133; Downloads: 0
Fulltext (1,06 MB) |